

From Real-world Identities to Privacy-preserving and Attribute-based

CREDentials for Device-centric Access Control

WP5 – Attribute-Based Access Control

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

Digital Security: Cybersecurity,
Privacy and Trust
DS-02-2014 Access Control

Editor(s): Giuseppe Bianchi (CNIT), Alberto Caponi (CNIT), Claudio Pisa
(CNIT)

Author(s): Giuseppe Bianchi (CNIT), Alberto Caponi (CNIT), Claudio Pisa
(CNIT), Tooska Dargahi (CNIT), Emanuele Altomare (CNIT),
Vangelis Bagiatis (UPCOM), Lefteris Fanos (UPCOM), Savvas
Zannettou (CUT), Kwnstantinos Papadamou (CUT), Sotirios
Chatzis (CUT), Charalampos Partaourides (CUT), Panagiotis
Nikitopoulos (UPRC), Christos Lyvas (UPRC), Christoforos
Dadoyan (UPRC), Eleni Veroni (UPRC), Christos Xenakis
(UPRC), George Gugulea (CSGN), Bogdan Chifor (CSGN),
Alberto Carp (CSGN), Mihai Togan (CSGN), Evangelos
Kotsifakos (WEDIA), Bharadwaj Pulugundla (VERI), Steven
Gevers (VERI)

Dissemination Level: PU

Nature: O

Version: 1.1

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

2

ReCRED Project Profile

Contract Number 653417

Acronym ReCRED

Title From Real-world Identities to Privacy-preserving and Attribute-based
CREDentials for Device-centric Access Control

Start Date May 1st, 2015

Duration 36 Months

Partners

University of Piraeus research
center

Greece

Telefonica Investigacion Y
Desarrollo Sa

Spain

Verizon Nederland B.V. The Netherlands

Certsign SA Romania

Wedia Limited Greece

EXUS Software Ltd U.K.

Upcom Bvba (sme) Belgium

De Productizers B.V. The Netherlands

Cyprus University of Technology Cyprus

Universidad Carlos III de Madrid Spain

Consorzio Nazionale
Interuniversitario per le

Telecomunicazioni
Italy

Studio Professionale Associato a
Baker & Mckenzie

Italy

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

3

Document History

Version Date Author Remarks

0.1 18/01/2017 CNIT TOC proposal
0.2 26/01/2017 CNIT TOC Update
0.3 14/02/2017 CNIT Final ToC
0.3 Feb 2017 CNIT, CSGN FIDO/P-ABAC integration
0.4 Mar 2017 CNIT, VERI OpenAM/P-ABAC integration
0.5 Mar 2017 CNIT, CSGN FIWARE specification and integration
0.6 24/03/2017 CNIT Contributions integration
0.7 27/03/2017 UPRC TEE contribution integration
0.8 27/03/2017 CNIT First draft release
0.9 30/03/2017 CNIT, CUT, WEDIA Review of the deliverable
1.0 31/03/2017 CNIT Final Release
1.1 31/07/2017 CNIT Changes to reopened deliverable

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

4

Executive Summary
This document is part of the WP5 (Attribute-Based Access Control) of the ReCRED project. The purpose

of this deliverable is to report the definition and the description of the final specification and design

of the Attribute-Based Access Control (ABAC) architecture. The design of the final architecture starts

from the initial design provided in the previous Deliverable D5.1 (Specification and Initial Design of the

ABAC Infrastructure) which was bootstrapped by an initial investigation on the state-of-the-art of

ABAC platforms to be integrated and deployed in the ReCRED framework.

The main purpose of this document is to provide a detailed description of the design and the

implementation of components that provide to the ReCRED platform capabilities to enable Attribute

Based Access Control (ABAC). First, a general description of the final architectural design of the ABAC

architecture and protocols is provided. Next, following the whole architecture design, a detailed

description of the implementation of the functionalities supported by each component is provided as

well as representative screenshots from the applications that have been prototyped to offer those

functionalities to the administrators and end-users. Last, a description of the usage of the ABAC

capabilities in different ReCRED use-cases is provided as well as a discussion on security and privacy

of components and protocols of the ABAC architecture.

We improved the initial architectural design discussed in D5.1 by focusing on the integration of ABAC

components at the core of the architecture (Idemix, U-Prove, ABE) by means of a common interface

provided by the FiWARE API specification. Moreover, the usage of the TEE on the user’s device,

permits to execute cryptographic operations in a secure environment that prevents secret key

leakages. One of the most relevant objectives reached by the integration of ABAC architecture in the

ReCRED framework is the design and implementation of FIDO and OpenID connect. This integration

will enable the anonymous credential system to be used in commercial authentication solutions

already adopting such authentication mechanisms.

The document is organized as follows:

Chapter 2 provides a description of the Access Control mechanisms and motivations for using Attribute

Based Access Control. The discussions of the state of the art for Attribute Based Access Control

technologies and architectures, the definition of attributes and policies to be used for verification,

final prototyping of P-ABAC components and the integration between them are discussed in Chapter

3. The application scenarios of the ReCRED project and the benefit of using ABAC on them are reported

in Chapter 4. To conclude the deliverable, security and privacy considerations on the technologies

discussed in the document are reported in Chapter 5, while our final general conclusions are included

in Chapter 6.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

5

Table of Contents
Executive Summary ... 4

List of Figures .. 7

1 Introduction .. 9

1.1 Attribute-Based Access Control .. 9

1.2 Integration of ABAC in ReCRED .. 11

2 P-ABAC Architecture ... 13

2.1 P-ABAC Architectural Overview and Relation to the ReCRED Architecture 13

2.1.1 ABAC Components .. 13

2.1.2 ReCRED Components Mapping to the ABAC Architecture ... 15

2.2 Detailed P-ABAC Architectural Description ... 17

2.2.1 Privacy Preserving Attribute-Based Credential Systems ... 17

2.2.2 Common Interfaces and Protocols .. 41

3 P-ABAC Module Implementation and Mapping to P-ABAC components 60

3.1 P-ABAC Components Implementation .. 60

3.1.1 Credential Management Daemon ... 60

3.1.2 U-Prove Implementation ... 68

3.1.3 Trusted Execution Environment .. 75

3.1.4 Consent Management ... 78

3.1.5 De-anonymization Risk Assessment .. 86

3.1.6 P-ABAC and FIDO Integration .. 90

3.1.7 Credential Backup ... 94

3.1.8 OpenAM-based P-ABAC .. 100

3.1.9 IRMA-FIWARE Integration ... 102

3.1.10 Attributes and Policies for P-ABAC ... 104

3.1.11 ABE-Based P-ABAC Solution for Wi-Fi ... 109

3.2 P-ABAC Components Mapping .. 118

4 Application Scenarios .. 120

4.1 Support to Financial Services ... 120

4.1.1 Before ABAC .. 120

4.1.2 After ABAC ... 121

4.2 Campus Wi-Fi and Campus-Restricted Web Services .. 122

4.2.1 Before ABAC .. 123

4.2.2 After ABAC ... 123

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

6

4.2.3 Towards Privacy-Preserving ABAC .. 126

4.3 Age Verification ... 127

4.3.1 Before ABAC .. 128

4.3.2 After ABAC ... 128

4.4 ISIC Student Discounts ... 129

4.4.1 Before ABAC .. 129

4.4.2 After ABAC ... 129

5 Privacy and Security Considerations ... 131

5.1 Attacks and Privacy Issues in ABE and ABAC ... 131

5.2 Lack of Revocation ... 131

5.3 Key Abuse Attack for KP-ABE ... 131

5.4 Key Escrow ... 131

5.5 Attribute Hiding Attack in ABAC .. 131

5.6 Revelation of Access Policy and Attributes to Untrusted Servers 131

5.7 Revelation of User's Identity in Multi Authority Scheme .. 132

5.8 Mitigations to Enhance Security in ABE and ABAC systems .. 132

5.9 Privacy considerations of Idemix and U-Prove .. 132

5.9.1 Threat Model ... 132

5.9.2 Comparison of Privacy features .. 132

5.9.3 Revocation ... 133

5.10 OpenAM P-ABAC Security Considerations .. 134

5.11 FIDO Extensions for ABAC and Anonymous Credentials ... 134

5.12 Security Considerations for the IRMA-FIWARE integration .. 134

5.13 Privacy and Security Considerations in Idemix and U-Prove implementation 134

5.14 Security Analysis of the ABE-Based P-ABAC solution for Wi-Fi ... 135

6 Conclusions / Future Work ... 136

7 References .. 137

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

7

List of Figures

Figure 1 ReCRED ABAC functional architecture with elements involved ... 14

Figure 2 ABAC components view of the ReCRED Architecture ... 15

Figure 3 Idemix Issuance Protocol rounds between Issuer and Recipient components 19

Figure 4 Idemix Proving Protocol rounds between Prover and Verifier components 23

Figure 5 U-Prove Issuance protocol .. 31

Figure 6 U-Prove Presentation Protocol ... 35

Figure 7 "Using IRMA is easy" - from the IRMA Project [9] .. 54

Figure 8 IRMA data flow (verification) .. 55

Figure 9 IRMA for Mobile Devices Architecture ... 55

Figure 10 IRMA Issuance sequence diagram .. 56

Figure 11 IRMA Verification Sequence Diagram ... 57

Figure 12: Consent Management Design .. 58

Figure 13. IRMA Issuance Protocol ... 61

Figure 14. U-Prove client-server architecture... 62

Figure 15. Credential Management module submodules and interactions ... 63

Figure 16. List of available credential ready to be issued ... 65

Figure 17. Credential Issuing: Link of the User Device to the API server by means of QR Code 65

Figure 18. ReCRED Wallet Application .. 66

Figure 19. ReCRED Wallet Application: issuance consent display .. 67

Figure 20. ReCRED Wallet application: Credential list and details ... 68

Figure 21 The class diagram for the U-Prove engine .. 69

Figure 22 The issuance protocol from U-Prove .. 73

Figure 23: Idemix Issue protocol workflow implemented in TEE by means of OpenTEE 77

Figure 24 Consent Management Back-end architecture .. 78

Figure 25 Create new consent policy page ... 79

Figure 26 Selection of specific identity attribute .. 80

Figure 27. Selection of identity attributes below a certain LoA ... 80

Figure 28. Selection of specific Identity Provider ... 80

Figure 29. Selection of Identity Providers below a certain LoA .. 81

Figure 30. Selection of specific Service Provider .. 81

Figure 31. Selection of Service Providers below a certain LoA ... 81

Figure 32. List of a user's identity attributes .. 82

Figure 33. View created policies per identity attribute .. 82

Figure 34. List of Identity Providers .. 83

Figure 35. List of created policies per Identity Provider ... 83

Figure 36. List of Service Providers ... 84

Figure 37. List of created consent policies per Service Provider .. 85

Figure 38 Consent Management Web Front-end architecture .. 86

Figure 39 P-ABAC-FIDO Proposed Integrated Architecture .. 91

Figure 40 Authentication process from the FIDO UAF specification .. 92

Figure 41 P-ABAC-FIDO integrated authentication protocol - proposed changes to the FIDO UAF

specification are highlighted in red .. 93

Figure 42: Credential Backup & Restore mobile application: Main page ... 95

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

8

Figure 43: List with the Cryptographic Credentials stored in the mobile device 96

Figure 44: Page that shows to the user the details of a cryptographic credential 97

Figure 45: Details of an encrypted cryptographic credential ... 97

Figure 46: List with the Cryptographic credentials that are backed up in the Identity Consolidator .. 98

Figure 47: Process of fetching a cryptographic credential from the Identity Consolidator server 98

Figure 48: View list of user's backed-up credentials ... 99

Figure 49: Search user's credentials ... 99

Figure 50: View the details of a credential ... 100

Figure 51: Delete a credential ... 100

Figure 52 Protocol to integrate OpenAM within P-ABAC architecture .. 102

Figure 53 Mapping of the IRMA Verification Protocol into FIWARE Open RESTful APIs 103

Figure 51 screen shot of the Create ABAC Policy Tab ... 105

Figure 52 Show ABAC Policies tab ... 105

Figure 53 AccBAC Policies creation ... 106

Figure 54 AccBAC Policies View .. 106

Figure 55 PDP Request Example ... 106

Figure 56 PDP Policy Example ... 107

Figure 57 Database table: requests .. 108

Figure 58 Database table: policies .. 108

Figure 62 CP-ABE based proposed ABAC mechanism .. 113

Figure 63 WI-FAB overview diagram... 114

Figure 64 Format of the Vendor Specific Information Elements included in the IEEE 802.11 beacons

broadcast by the access point... 115

Figure 65 WI-FAB implementation overview .. 115

Figure 66 ECDF associated to the number of collected beacons needed to reconstruct the encrypted

secret with and without fountain coding (FC) .. 117

Figure 67 Time needed for the station to connect vs. number of attributes in the AP policy 117

Figure 68 Time needed for the station to connect vs. random WPA2 key regeneration interval (500

connection attempts for each regeneration interval, policy with 4 attributes) 117

file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743540
file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743541
file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743542
file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743543
file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743544
file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743545
file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743546
file://///Users/markin/Desktop/ReCRED_D5.2_Draft_20170331_v4.docx%23_Toc478743547

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

9

1 Introduction
The main target of the ReCRED project is to design and implement an architecture that allows a user

to simplify online identities management by consolidating them and by exploiting the concept of

Device Centric Authentication (DCA). However, another main objective of the project is to go beyond

the state-of-the-art of Device Centric Authentication platforms by integrating privacy-aware access

control capabilities, which are lacking in actual DCA platforms. Indeed, this is a natural step since user

identities are basically formed by user attributes that can be exploited in order to realize an Attribute

Based Access Control (ABAC) on resources that the user wants to access. Moreover, since the ReCRED

project targets mainly the security of the users’ identity and privacy in general, it is needed to add

privacy-preserving capabilities to the classical ABAC definition and technologies. This motivates the

strong focus of the ReCRED project on the integration and deployment of state-of-the-art anonymous

credentials platforms such as Idemix [43], U-Prove [45] and ABE [30] to realize a Privacy-Preserving

Attribute Based Access-Control (P-ABAC) architecture that is able to guarantee the anonymity of the

involved users . The final target is to have as outcome of the project a reference ABAC architecture

ready for the market, research projects and industrial exploitation.

The integration of such anonymous credential systems (Idemix and U-Prove), enriched with the state-

of-the-art of cryptographic protocols like Attribute Based Encryption (ABE) is realized by means of the

FIWARE Privacy Open RESTFul API [49]. This enables ReCRED to implement the ABAC architecture

exposing to the developer a single interface to be exploited for all these protocols. Moreover, our

ABAC infrastructure is designed to be completely integrated in commercial and widely used

authentication systems like FIDO and OpenID connect (OpenAM implementation).

The ABAC architecture will maintain the main device centric approach of the project thanks to the

integration of these ABAC systems in the user’s device, supported by the deployment and execution

inside the trusted execution environment (TEE) on the user-device. To reach such target, the ReCRED

project is investigating existing and open source TEE platforms in order to provide a full and secure

implementation of ABAC technologies directly on the device.

1.1 Attribute-Based Access Control

One of the purposes of the authentication process for users requesting to perform an action in a

system (e.g. requesting or modifying a resource) is the effective verification of the permissions that

such user has with respect to the specific requested action. Indeed, very often the concept of

authentication is confused and mixed with the identification or the authorization. They are all distinct

concepts, and should be thought of as such. Identification is nothing more than a user claiming it is

somebody, like for example declaring a username. Authentication is how a user proves that she is who

she declares to be: the user demonstrates the knowledge of something that only she knows (e.g. a

password) or something that only she has (e.g. a private key). Authorization is what takes place after

a user has been both identified and authenticated: it is this step that establishes what the user can do

once identified and authenticated in the system. Access control is one of the functionalities that

enables the verification of authorizations of a user when he/she is requesting to perform an operation

over a resource.

Traditionally, access control is based on the identity of a user or pre-defined attribute types such as

roles or groups assigned to that user. This approach requires cumbersome management, since it

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

10

requires to associate capabilities (authorized operations) directly to users or their roles or groups.

Moreover, the requested qualifiers of identity, groups, and roles are often insufficient in the

expression of real-world access control policies. An alternative is to grant or deny user requests based

on arbitrary attributes of the user and arbitrary attributes of the resource, and environment

conditions that may be globally recognized and more relevant to the policies at hand, that takes the

name of Attribute Based Access Control (ABAC). ABAC enables resource and service providers to apply

an access control policy without prior knowledge of the specific requester and for an unlimited

number of users that might require access. As a new user joins the system, rules and resources do not

need to be modified. Since the user is assigned the attributes necessary to access the required objects

no modifications to existing rules or object attributes are required.

The evolution of access control models starts from the definition of Mandatory Access Control (MAC)

and Discretionary Access Control (DAC) [64][65]. Such kind of access control was first implemented in

the U.S.A. Department of Defense (DoD) applications and often employed in government and military

facilities. Mandatory access control works by assigning a classification label (including confidential,

secret and top secret) to each file system object. Each user and device on the system is assigned a

similar classification and clearance level. While it is the most secure access control setting available,

MAC requires careful planning and continuous monitoring to keep all resource objects' and users'

classifications up to date.

As the highest level of access control, MAC can be contrasted with lower-level discretionary access

control (DAC), which allows individual resource owners to make their own policies and assign security

controls.

As networks and systems grew, the need to limit access to specific protected objects spurred the

growth of Identity-Based Access Control (IBAC) that employs mechanisms such as access control lists

(ACLs) to capture the identities of those allowed to access the object. If a subject presents a credential

that matches the one held in the ACL, the subject is given access to the object. Individual privileges of

the subject to perform operations (read, write, edit, delete, etc.) are managed on an individual basis

by the object owner. Each object needs its own ACL and set of privileges assigned to each subject. In

the IBAC model, the authorization decisions are made prior to any specific access request and result

in the subject being added to the ACL. For each subject to be placed on an ACL, the object owner must

evaluate identity, object, and context attributes against policy governing the object and decide

whether to add the subject to the ACL. This decision is static and a notification process is required for

the owner to re-evaluate and perhaps remove a subject from the ACL to represent subject, object, or

contextual changes. Failure to remove or revoke access over time leads to users accumulating

privileges.

The most important improvement on the management of permissions and access control policies is

provided by the Role-Based Access Control model (RBAC) [66][67][68] that employs pre-defined roles

carrying a specific set of privileges associated with them and to which subjects are assigned. For

example, a subject assigned the role of Manager will have access to a different set of objects than

someone assigned the role of Analyst. In this model, access is implicitly predetermined by the person

assigning the roles to each individual and explicitly by the object owner when determining the

privilege associated with each role. At the point of an access request, the access control mechanism

evaluates the role assigned the subject requesting access and the set of operations this role is

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

11

authorized to perform on the object before rendering and enforcing an access decision. Note that a

role may be viewed as a subject attribute that is evaluated by the access control mechanism and

around which object access policy is generated. As the RBAC specification gained popularity, it made

central management of enterprise access control capabilities possible and reduced the need for ACLs.

ACLs and RBAC are in some ways special cases of Attribute-Based Access Control (ABAC) in terms of

the attributes used. ACLs work on the “identity” attribute while RBAC works on the “role” attribute.

The key difference with ABAC is the concept of policies that express a complex Boolean rule set that

can evaluate many different attributes. While it is possible to achieve ABAC objectives using ACLs or

RBAC, demonstrating access control requirements compliance is difficult and costly due to the level

of abstraction required between the AC requirements and the ACL or RBAC model. Another problem

with ACL or RBAC models is that if the AC requirement is changed, it may be difficult to identify all the

places where the ACL or RBAC implementation needs to be updated.

Trying to implement IBAC or RBAC access control decisions would require the creation of numerous

roles that are ad-hoc and limited in membership, leading to what is often termed “role explosion”. A

method is needed to make access control decisions without previous knowledge of the object by the

subject or knowledge of the subject by the object-owner. By relying upon the concepts of subject and

object attributes consistently defined between organizations, ABAC avoids the need for explicit

authorizations to be directly assigned to individual subjects prior to a request to perform an operation

on the object. Moreover, this model allows flexibility in a large enterprise where management of

access control lists or roles and groups would be time consuming and complex. Leveraging consistently

defined attributes that span both subjects and objects, authentication and authorization activities can

be executed and administered in the same or separate infrastructures, while maintaining appropriate

levels of security. In general, ABAC avoids the need for capabilities (operation/object pairs) to be

directly assigned to subject requesters or to their roles or groups before the request is made. Instead,

when a subject requests access, the ABAC engine can make an access control decision based on the

assigned attributes of the requester, the assigned attributes of the object, environment conditions,

and a set of policies that are specified in terms of those attributes and conditions. Under these

arrangement policies can be created and managed without direct reference to potentially numerous

users and objects, and users and objects can be provisioned without reference to policy.

In addition to the high flexibility of the ABAC approach for access-control, we strongly believe that the

users’ privacy and anonymity should be guaranteed by an ABAC architecture. Given this motivation,

the ReCRED project designed the access-control around the concept of Privacy-Preserving Attribute

Based Access-Control (P-ABAC) where, the user is authorized based only on effectively required

attributes without requiring the disclosure of its identity. This is possible thanks to the integration of

cryptographic schemes like Idemix [43], U-Prove [45] and Attribute Based Encryption (ABE) [30].

1.2 Integration of ABAC in ReCRED

The state-of-the-art of Device Centric Authentication (DCA) platforms does not provide such access

control capabilities since they are only focused on providing authentication methods to the user. The

ReCRED platform will fill this gap by integrating support for attribute-based access control (ABAC)

allowing to support the validation of the complete identity of an individual when the verifier considers

only a specific identity attribute in order to grant the individual access to a resource. The ReCRED

architecture for ABAC mainly addresses the fragmentation of the access control models and aims to

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

12

create a platform that is open, i.e., designed and developed in such a way that it may interact with all

the existing and new emerging standards and solutions in the area of user identification,

authentication and access management.

A key goal of the entire ReCRED platform is to guarantee the protection of the privacy of the

individuals using the services. In order to match this goal, the ReCRED ABAC architecture adopts a

private credentials approach to let users prove their identity attributes safely from their device to the

online or physical relying service. Indeed, in most of the real-world scenarios, users do not need to

reveal their complete identity as the verifiers require knowing only an aspect of their identity (e.g.,

their age, their home address, their profession, whether they are students, etc.). Yet, users are forced

to reveal their credit card details or present ID cards. By facilitating attribute-based access control, our

solution becomes privacy-preserving by design thanks to the integration of Anonymous Credential

Systems, i.e. cryptographic protocols that can support attribute-based access control (ABAC) like

Idemix [43] and U-Prove [45].

In order to provide a fast implementation and deployment of the ABAC, ReCRED gave particular

attention to the results of relevant EC-funded projects like ABC4Trust [50] and FIWARE [48]. The first

provides a baseline architecture for Anonymous Credential System to be used in the P-ABAC

architecture, while the second allows to use a common protocol between different Anonymous

Credentials Systems.

One of the ambitious goals of ReCRED project, discussed in this document, is the integration of the

ABAC framework with most common and widely deployed technologies for user authentication and

authorization like FIDO [38] and OpenID connect [39]. The ReCRED P-ABAC infrastructure provides

such integration thanks to specific protocol and components designed to adapt the credential system

with common username/password or public key systems.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

13

2 P-ABAC Architecture
The ReCRED Device-Centric Reference Architecture described in Deliverable D2.3 and partially

depicted in Figure 2 includes sub-components in charge of the Attribute Based Access Control

credentials management in order to provide functionalities for the issuing and the verification of such

credentials as well as the secure storage and management.

The architectural design, as well as the protocols design, to support the ABAC infrastructure in the

ReCRED framework are driven by the following considerations: i) the protection of the privacy and the

anonymity of users should be guaranteed, ii) the attributes issued to the users should be verified

against certified real identity-attributes where it is possible, iii) the verification of attributes should

occur only on really required attributes and, iv) the user should be able to consent the disclosure of

attributes required to access a service.

The privacy of the users is guaranteed by means of cryptographic approaches to realize the Privacy-

Preserving Attribute-Based Access Control (P-ABAC). Idemix and U-Prove are the baseline of our P-

ABAC architecture that allows to have a fully anonymous, un-linkable and un-trackable credential

system. All components have a standard interface for the exchange of information provided by

FIWARE Privacy Open RESTful API specifications [49]. This section will provide to the reader a detailed

description of all components involved in the final design of the P-ABAC architecture supported in the

ReCRED framework.

2.1 P-ABAC Architectural Overview and Relation to the ReCRED

Architecture

2.1.1 ABAC Components

The ReCRED P-ABAC architecture does not differ from a standard ABAC architecture where three main

actors are involved:

 Issuer: similar to the role of an Authority in standard PKI infrastructures, is the component in

charge for releasing (issuing) credentials to users.

 Recipient/Prover: is the user that collects credentials and use them to generate the proof of

possession to requesting services.

 Verifier: is the component that requires the proof of possession of attributes of the user. It

usually requires from the user to prove the possession of attributes that belong to a Boolean

policy.

A more detailed description of these components from a functional point of view is provided in

Figure 1 and in the following sub-sections, while a description of the actual mapping of these

components to the ReCRED general architecture is included in Section 2.1.2.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

14

Figure 1 ReCRED ABAC functional architecture with elements involved

2.1.1.1 User

In the ReCRED P-ABAC architecture, the User is the subject that wants to access a resource. It owns

verifiable attributes and can hold and receive credentials from the Issuer. It can securely authenticate

to Issuers and correctly parse credential policies. It can also send to Verifiers certified proofs (which

can be zero-knowledge proofs) of possession of its attributes.

These functionalities are supported by:

 the User Credential Policy and Format Engine, which can correctly interpret the semantics of

the credential policies and specifications provided by the Issuer

 the Proof Production Engine, which can output partial verifiable profiles including only a

subset of the User attributes or a set of assertions based on them

 the Cryptographic Credentials Storage, which can securely store the cryptographic credentials

obtained by the issuer

The User takes part both in the Issuing and Authentication protocols together with the Issuer and in

the Proving protocol with the Verifier.

2.1.1.2 Issuer

In the ReCRED ABAC architecture, the Issuer is the entity that is able to verify the attributes of the

User and to issue credentials that certify these attributes.

These functionalities are supported by:

 the Issuer Credential Policy and Format Engine, which can associate policies and credential

types with the issuance action initiated by the User

 the Attribute Verification Engine, which can verify the attributes owned by the credential

requesting User

 the Cryptographic Credential Issuance Engine, which can produce cryptographic credentials

based on the verified attributes of the User

The Issuer takes part in the Authentication and Issuing protocols together with the User.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

15

2.1.1.3 Verifier

In the ReCRED ABAC architecture, the Verifier is the entity that holds a resource that the User wants

to access. It can verify the proofs provided by the User according to given policies, provided that a

chain of trust exists towards the credential issuer.

These functionalities are supported by:

 the Access Control Policy Engine, which provides the attribute-based policies associated to

requested resources

 the Proof Verification Engine, which can verify, according to a given policy, the partial

verifiable profiles provided by the User

The Verifier takes part in the Proving protocol together with the User.

2.1.2 ReCRED Components Mapping to the ABAC Architecture

This section describes how the ABAC components described above (User, Issuer and Verifier) are

mapped to the ReCRED Reference Architecture described in Deliverable D2.3. To this aim, Figure 2

shows the ReCRED architecture from an ABAC perspective.

Figure 2 ABAC components view of the ReCRED Architecture

2.1.2.1 User Device

The User Device is the central component of the ReCRED architecture. From the ABAC point of view it

maps to the User functionality described in Section 2.1.1.1. It has the capability to securely

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

16

authenticate to Issuers and the Identity Consolidator (e.g. through FIDO [38], OpenID [39], OAuth

[40]), to request cryptographic credentials from Issuers and the Identity Consolidator, to securely

store cryptographic credentials, to backup credentials in the Identity Consolidator, to correctly parse

and show Issuer and Verifier policies to the user and to create verifiable partial profiles containing a

subset of identity attributes.

The Cryptographic Credentials Storage functionality is provided in the ReCRED architecture by the

component with the same name, while the Proof Production Engine and the User Credential Policy

and format engine functionalities are provided by the Identity Management application.

2.1.2.2 Identity Consolidator

The Identity Consolidator is the ReCRED component that enables horizontal identity binding and

vertical real-to-online identity mapping. It can acquire the physical attributes of real world identities.

From the ABAC point of view it maps to the Issuer functionality described in Section 2.1.1.2. It has the

capability to allow secure authentication from the User Device, to issue verified cryptographic

credentials to the user device, to allow backup credential storage from the user device, to prove

identity attributes on behalf of the user and to receive identity attributes from the Identity Providers.

The Attribute Verification Engine, Issuer Credential Policy and Format Engine and Cryptographic

Credential Issuance Engine functionalities are provided by the Cryptographic Credentials Issuance and

Revocation module.

2.1.2.3 Identity Providers

In the ReCRED architecture the Identity Providers are the entities in charge of managing the identity

of the users. Such entities are able to verify the identity of the users in order to issue credentials

accordingly. Moreover, they provide functionalities for PABAC credentials verification to the Service

Providers (SP). In what follows the two functionalities provided by the IdP are discussed.

2.1.2.3.1 Issuing Authorities

From the ABAC point of view, the Issuing Authorities map to the Issuer functionality described in

Section 2.1.1.2. They are able to allow secure authentication from the User Device, to issue credentials

to the User Device, to transfer issued credentials as a backup to the Identity Consolidator on behalf of

the user and, when privacy-aware cryptographic protocols are not supported, to transfer identity

attributes to the Identity Consolidator so that this can issue credentials on behalf of the Identity

Provider.

The Attribute Verification Engine, Issuer Credential Policy and Format Engine and Cryptographic

Credential Issuance Engine functionalities are provided by the Cryptographic Credentials Issuance

module.

2.1.2.3.2 Verifiers

From the ABAC point of view they map to the Verifier functionality described in Section 2.1.1.3. They

have the capability to provide complex access-right policies to the users, to verify cryptographic

credentials against these policies and to accordingly grant or deny access to the resources.

The Access Control Policy Engine and Proof Verification Engine functionalities are provided by the

Access Control Policy and ReCRED Daemon modules.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

17

2.2 Detailed P-ABAC Architectural Description

2.2.1 Privacy Preserving Attribute-Based Credential Systems

2.2.1.1 Idemix

Idemix [41][42][43] is an identity management system based on anonymous credentials and zero-

knowledge protocols. Parties involved in the Idemix system can play the roles of issuers, recipients,

provers and verifiers. The issuer represents the authority demanded to the issuance of credentials (for

which she is responsible) to a recipient through an issuance protocol that results in the recipient

owning a credential. When a proof of possession of credential is required by a verifier, the credential

owner (the recipient that obtained the credential issued by the authority) acts in the role of a prover

towards the verifier. An Idemix credential consists of a set of attribute values as well as cryptographic

information that allows the owner of the credential to create the proof of possession. The components

of the ReCRED reference architecture are easily mapped into the above described roles of the Idemix

architecture, in order to realize an anonymous credential system to provide Attribute Based Access

Control feature in the ReCRED framework. In this section, we are going to present the protocols and

the messages involved in the Idemix system described in [41] to which we refer for a complete

description of the cryptographic system.

2.2.1.1.1 Idemix Anonymous Credential Scheme

The Idemix protocol requires that all parties agree on public master system parameters such as the

bit length of all relevant parameters as well as the groups to be used. Given such global parameters,

a user can choose her master secret key that will be contained by each credential, resulting in a

parameter that binds together all credentials. This discourage (but does not prevent!) from sharing

credentials with the aim of collusion, as sharing one credential effectively implies sharing all the

credentials of a user. Moreover, the master secret allows the prover to derive the pseudonyms to use

when she requires credentials to be issued by the issuers. Each receiver can generate different

pseudonyms to be shown to the issuers. Such pseudonyms, even if generated by the same receiver,

cannot be linked to each other unless she proves that they are based on the same master secret key.

Issuers generate public and secret keys associated to the cryptographic primitives they use and make

the public keys available together with a specification of the services they offer. As an example, each

issuer publishes the definition (i.e. the Credential Structure) of the credential it allows to be issued. To

obtain a credential, the receiver contacts an issuer and agrees with her on the structure of the

credential, i.e. which will be the values of the attributes asserted by the credential. She then runs the

interactive issuing protocol with the organization. Having acquired a credential, the receiver switches

to the role of a prover in order to prove to a verifier the possession of the credential. A proof of

possession may involve several credentials acquired by the same user or proving statements on the

attribute values contained in the credentials using the proving protocol. Moreover, these proofs may

be linked to a pseudonym chosen by the prover. Moreover, the proving protocol and issuing protocol

credentials may be combined, in the case of an issuer requiring the recipient to release certified

attribute values (a proof that she holds a credential issued by another party) before issuing a new

credential. The Idemix protocol consists of three basic functionalities described in the following

sections: i) system setup, allows parties to get initialized in the Idemix system, ii) credential issuance,

is the functionality that permit a receiver to get the credential by the issuer and finally iii) credential

proving, is the functionality demanded to the verification of credentials presented by a prover to a

verifier.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

18

2.2.1.1.2 System Setup

The anonymous credential system requires general parameters, which are separated into system

parameters consisting of bit lengths and group parameters which define the groups that are used

within the underlying cryptographic scheme.

 Global Parameters: System parameters should be fixed and made public to all parties. Such

global parameters include bit lengths and groups size to be used in the scheme. Such

parameters’ values are reported in [41].

 Issuer Parameters: The issuer’s key pair is used for issuing credentials to the users, i.e. issuing

signatures on a list of attributes requested by a user. The maximum number 𝑙 of attributes of

the credential is determined by the public key of the issuer. The number of attributes available

to users is 𝑙 − ℓ𝑟𝑒𝑠 since some attributes, e.g., the master secret that is considered as an

attribute, are reserved. The issuer generates:

o A safe RSA key-pair: generates the safe primes 𝑝 and 𝑞 where 𝑝 = 2𝑝′+ 1 and 𝑞 =

2𝑞′+ 1, and then computes the RSA module 𝑛 = 𝑝𝑞

o Random values 𝑥𝑧, 𝑥𝑅1 , … , 𝑥𝑅𝑙
𝑅
←{2, 𝑝′𝑞′ − 1} and 𝑆

𝑅
←𝑄𝑅𝑛 in order to compute the

CL signature [42] [44] parameters:

𝑍 = 𝑆𝑥𝑧 and 𝑅𝑖 = 𝑆
𝑥𝑅𝑖

Finally, the issuer’s public key is the set of parameters 𝑝𝑘 = (𝑛, 𝑆, 𝑍, 𝑅1, . . . , 𝑅𝑙, 𝑃
), where 𝑃

is the proof of correctness of the public key, while the private key is 𝑠𝑘 = (𝑝, 𝑞).

 User Parameters: The user’s master secret m_1 is an integer chosen uniformly at random

from the interval [1, ρ].

 Pseudonyms: The user can generate as many pseudonyms (nym) and domain pseudonyms

(dnym) as she wants. Each pseudonym or domain pseudonym is un-linkable to any other

pseudonym or domain pseudonym generated by the user. However, the domain pseudonyms

enforce that a user can only generate one pseudonym per domain (i.e., given the domain and

the user’s master secret key, the domain pseudonym is unique).

2.2.1.1.3 Credential Issuance

The issuance phase is performed by running an interactive protocol between the Issuer and the

Recipient (i.e. the User requesting the issuance of a credential owned and specified by the issuer she

is contacting).

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

19

Figure 3 Idemix Issuance Protocol rounds between Issuer and Recipient components

2.2.1.1.3.1 Credential Issuance: Round 0

As shown in Figure 3, the issuance protocol is the result of four different phases, namely rounds,

performed by the two parties that exchange the output of each round in order to proceed with the

following one:

Round 0 Nonce Generation

Performed by Issuer

Input -

Output 𝑛1

2.2.1.1.3.2 Credential Issuance: Round 1

The Issuer extract a random value 𝑛1 to be provided to the Recipient and start the issuance protocol

by using such a fresh value.

𝒏𝟏
𝑅
← {0,1}

ℓ0

Round 1 Attributes’ commitment

Performed by Recipient

Input 𝑛1

Output 𝑈, 𝑃1, 𝑛2

The Recipient computes the value, considering the value of each attribute {𝑚𝑖}:

𝑼 = 𝑆𝑣
′
∙ ∏ 𝑅

𝑗

𝑚𝑗
𝑗 ∈𝐴 𝑚𝑜𝑑 𝑛, where: 𝑣′

𝑅
←± {0, 1}ℓ𝑛+ℓ0

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

20

This is the commitment of the attribute’s values 𝑚𝑖 to demonstrate to the issuer the ownership of

such attributes by the recipient. As output of this round, the Recipient produces a non-interactive

proof 𝑃1 of the above computation:

𝑷𝟏 =

(

𝑐 = 𝐻(𝑐𝑜𝑛𝑡𝑒𝑥𝑡| 𝐶1|… |𝐶𝑘|𝑛𝑦𝑚|𝑑𝑛𝑦𝑚|𝑈̃|𝐶̃1|… |𝐶̃𝑘|𝑛𝑦𝑚̃|𝑑𝑛𝑦𝑚̃|𝑛1)

𝑠𝐴 = {𝑚̂0, … , 𝑚̂𝑘} 𝑤ℎ𝑒𝑟𝑒 𝑚̂𝑗 = 𝑚̃𝑗 + 𝑐𝑚𝑗
𝑣′ = 𝑣̃′ + 𝑐𝑣′ 𝑤ℎ𝑒𝑟𝑒
𝑟̂𝑗 = 𝑟̃𝑗 + 𝑐𝑟𝑗 𝑖𝑓 𝑛𝑦𝑚 ≠⊥)

The values included in 𝑃1 are reported below:

1. Choose the random value:

𝑚̃𝑗
𝑅
← {0, 1}ℓ0+ℓ𝑚+ℓ𝐻+1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒

2. Proof of the knowledge of pseudonym and master secret 𝑚1:

𝑛𝑦𝑚̃ = 𝑔𝑚̃1ℎ𝑟̃𝑖 𝑚𝑜𝑑 Γ, 𝑤ℎ𝑒𝑟𝑒 𝑟𝑖̃
𝑅
← [0, 𝜌]

3. Proof of the knowledge of domain’s pseudonym and master secret 𝑚1:

𝑑𝑛𝑦𝑚̃ = 𝑔𝑑𝑜𝑚
𝑚̃1 𝑚𝑜𝑑 Γ

4. Knowledge of representation of 𝑈:

𝑈̃ = 𝑆𝑣̃
′
∙ ∏ 𝑅

𝑗

𝑚̃𝑗
𝑗 ∈𝐴 𝑚𝑜𝑑 𝑛 where 𝑣̃′ =

𝑅
←± {0, 1}ℓ𝑛+2ℓ0+ℓ𝐻

5. Knowledge of committed values:

𝐶̃𝑗 = {𝐶̃1, … , 𝐶̃𝑘} with {
𝐶̃𝑘 = 𝑍𝑘

𝑚̃𝑘𝑆𝑘
𝑟̃𝑘 𝑚𝑜𝑑 𝑛

𝑟̃𝑗
𝑅
← {0, 1}2ℓ0+ℓ𝑛+ℓ𝐻

6. Fiat-Shamir challenge:

𝑐 = 𝐻(𝑐𝑜𝑛𝑡𝑒𝑥𝑡| 𝐶1|… |𝐶𝑘|𝑛𝑦𝑚|𝑑𝑛𝑦𝑚|𝑈̃|𝐶̃1|… |𝐶̃𝑘|𝑛𝑦𝑚̃|𝑑𝑛𝑦𝑚̃|𝑛1)

7. Responses to the challenge:

𝑣′ = 𝑣̃′ + 𝑐𝑣′

𝑠𝐴 = {𝑚̂0, … , 𝑚̂𝑘} with 𝑚̂𝑗 = 𝑚̃𝑗 + 𝑐𝑚𝑗

In addition to the 𝑈 and the proof of it 𝑃1, the Recipient extract a random value 𝑛2 to be used as a

client generated nonce for the issuance session:

𝒏𝟐
𝑅
←± {0, 1}ℓ0

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

21

2.2.1.1.3.3 Credential Issuance: Round 2

Round 2 Signature generation

Performed by Issuer

Input 𝑈, 𝑝1, 𝑛2 ∈𝑅 {0,1}
ℓ0

Output (𝐴, 𝑒, 𝑣′′), 𝑃2, {𝑚𝑖}𝑖∈𝐴𝑘

The Issuer verifies the correctness of the 𝑃1 value sent by the Recipient by computing the following:

1. Knowledge of pseudonym and master secret 𝑚1:

𝑛𝑦𝑚̂ = 𝑛𝑦𝑚−𝑐𝑔𝑚̂1ℎ𝑟̂ 𝑚𝑜𝑑 Γ

2. Knowledge of domain pseudonym and master secret 𝑚1:

𝑑𝑛𝑦𝑚̂ = 𝑑𝑛𝑦𝑚−𝑐𝑔𝑑𝑜𝑚
𝑚̂1 𝑚𝑜𝑑 Γ

3. Representation of 𝑈:

𝑈̂ = 𝑈−𝑐(𝑆𝑣̂
′
) ∙∏𝑅𝑗

𝑚̂𝑖

𝑗 ∈𝐴

𝑚𝑜𝑑 𝑛

4. Knowledge of committed values:

𝐶̃𝑗 = {𝐶̃1, … , 𝐶̃𝑘} with 𝐶̂𝑘 = 𝑐𝑘
−𝑐𝑍𝑘

𝑚̂𝑘𝑆𝑘
𝑟̂𝑘 𝑚𝑜𝑑 𝑛

5. Challenge verification to be compared with 𝑐 sent by Recipient:

𝑐̂ = 𝐻(𝑐𝑜𝑛𝑡𝑒𝑥𝑡| 𝐶1|… |𝐶𝑘|𝑛𝑦𝑚|𝑑𝑛𝑦𝑚|𝑈̂|𝐶̂1|… |𝐶̂𝑘|𝑛𝑦𝑚̂|𝑑𝑛𝑦𝑚̂|𝑛1)

In case 𝑐 = 𝑐̂, the correctness is verified and the Issuer proceeds with the generation of the CL-

signature 𝜎𝐶𝐿 on attribute’s values:

𝝈𝑪𝑳 =

(

𝑨 = 𝑄𝑒
−1 𝑚𝑜𝑑 𝑝′𝑞′

𝒆
𝑅
←[2ℓ𝑒−1, 2ℓ𝑒−1 + 2ℓ𝑒

′−1]

𝒗′′ = 2ℓ𝑣−1 + 𝑣̃ 𝑤𝑖𝑡ℎ 𝑣̃
𝑅
←{0, 1}ℓ𝑣−1)

1. The value 𝑄 is computed as follows:

𝑄 =
𝑍

𝑈𝑆𝑣
′′∏ 𝑅𝑖

𝑚𝑖
𝑗∈𝐴𝑘

 𝑚𝑜𝑑 𝑛

To proof the correctness of the computation, the Issuer compute the value 𝑃2:

𝑷𝟐 = (
𝑐′ = 𝐻(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑄|𝐴|𝐴̃|𝑛2)

𝑠𝑒 = 𝑒 − 𝑐𝑒
′ 𝑚𝑜𝑑 𝑝′𝑞′

)

1. Such computation also includes the definition of:

𝐴̃ = 𝑄𝑟 𝑚𝑜𝑑 𝑛 with 𝑟
𝑅
←ℤ𝑝′𝑞′

∗

This phase of the issuance protocol ends with the Issuer sending to the Recipient the following values:

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

22

𝜎𝐶𝐿 = (𝐴, 𝑒, 𝑣
′′), 𝑃2, {𝑚𝑖}𝑖∈𝐴𝑘

2.2.1.1.3.4 Credential Issuance: Round 3

Round 3 Signature storage

Performed by Recipient

Input (𝐴, 𝑒, 𝑣′′), 𝑃2, {𝑚𝑖}𝑖∈𝐴𝑘

Output (𝐴, 𝑒, 𝑣)

The last step of the issuance protocol, executed by the Recipient, starts with the verification of the CL-

signature on attribute’s values produced by the Issuer. Indeed, the Recipient first compute the value:

𝑣 = 𝑣′′ + 𝑣′

Using that value checks whether:

𝑄 =
𝑍

𝑈𝑆𝑣∏ 𝑅𝑖
𝑚𝑖

𝑗∈𝐴𝑘

 𝑚𝑜𝑑 𝑛 ∶= 𝑄̂ = 𝐴𝑒 𝑚𝑜𝑑 𝑛

If 𝑄 = 𝑄̂ it proceeds with the verification of the values in 𝑃2:

1. Computes the value of 𝐴̂:

𝐴̂ = 𝐴𝑐
′+𝑠𝑒 𝑒𝑆𝑣

′𝑠𝑒 𝑚𝑜𝑑 𝑛

2. Checks whether:

𝑐̂ = 𝐻(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑄|𝐴|𝐴̂|𝑛2) ∶= 𝑐
′

Finally stores the signature of all attributes in the credential {𝑚𝑖}𝑖∈𝐴: 𝑨, 𝒆, 𝒗

2.2.1.1.4 Credential Proving

The credential proving procedure, differently from the issuance protocol, is performed in only two

steps, as shown in Figure 4. The credential proving phase aims to demonstrate to the verifier that a

prover (i.e. the recipient of the issuance phase) effectively owns the combination of attributes that

satisfy a given access control policy, namely Statement S, over such attributes. In the Idemix scheme,

such policy is split in the so-called Predicates so that for each predicate the corresponding Prover and

Verifier algorithm exists. For ease of discussion we will present here only details for the verification of

a set of attribute’s values signature that is, de facto, the proof of possession of a set of attributes

having specific values required by the verifier. The Idemix scheme allows also to prove and verify

statement with more complex Boolean policies between attributes, as described in [42].

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

23

Figure 4 Idemix Proving Protocol rounds between Prover and Verifier components

This phase is split in a simple two-phase request-response protocol with the buildProof and the

verifyProof procedures run, respectively, by the User/Prover and the Verifier.

2.2.1.1.4.1 Proof building procedure

buildProof Produces the proof of possession of the credentials
required by the verifier policy

Performed by Prover

Input 𝑚1, {𝑐𝑟𝑒𝑑}, 𝑆, 𝑛1

Output non-interactive proof of statements in S: (Common,
c, s)

Where 𝑆 is the statement sent by the verifier, {𝑐𝑟𝑒𝑑} are the credential(s) and the nonce 𝑛1 is

generated by the Verifier and sent to the Prover. In what follows we show the building procedure for

the proof of the signature (sub-prover ProveCL) for a set of attributes 𝐴𝑟 requested by and revealed

to the Verifier. The attributes not requested by the Verifier will not be revealed to preserve the user’s

privacy and reported as hidden attributes included in the set 𝐴ℎ. The prover maintains a global list of

values that are common to all sub-provers algorithms of the build proof procedure:

1. Hidden value of each hidden attribute in 𝐴ℎ:

𝑚̃𝑖
𝑅
← {0, 1}ℓ0+ℓ𝑚+ℓ𝐻

2. Common values common and t-values T (ProveCL in the example):

1. Randomize the credential’s signature (𝐴, 𝑒, 𝑣):

𝑟𝐴
𝑅
← {0,1}ℓ0+ℓ𝑛

𝜎𝑅 = (
𝑨′ = 𝐴𝑆𝑟𝐴
𝑣′ = 𝑣 − 𝑒𝑟𝐴
𝑒′ = 𝑒 − 2ℓ𝑒−1

)

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

24

2. Compute t-values:

o 𝑒̃
𝑅
←{0, 1}ℓ0+ℓ𝐻+ℓ𝑒

′

o 𝑣̃′
𝑅
←{0, 1}ℓ0+ℓ𝐻+ℓ𝑣

o For each attribute in 𝐴ℎ compute:

𝑍̃ = (𝐴′)
𝑒̃
(∏𝑅𝑖

𝑚𝑖) (𝑆𝑣̃
′
)

At this point add 𝐴′ to the common values list {𝒄𝒐𝒎𝒎𝒐𝒏} and 𝑍̃ to the t-values list

{𝑇}.

3. Compute the challenge:

𝒄 = 𝐻(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|{𝒄𝒐𝒎𝒎𝒐𝒏}|{𝑇}|𝑛1)

4. Compute the s-values:

𝒔 = (
𝑒̂ = 𝑒̃ + 𝑐(𝑒 − 2ℓ𝑒−1)

𝑣 = 𝑣̃ + 𝑐𝑣′

𝑚̂𝑖 = 𝑚̃𝑖 + 𝑐𝑚𝑖, ∀𝑚𝑖 ∈ 𝐴ℎ

)

The proof of possession of attributes 𝐴𝑟 requested by the Verifier is: (𝐶𝑜𝑚𝑚𝑜𝑛, 𝑐, 𝑠).

2.2.1.1.4.2 Proof verification procedure

verifyProof is the verification phase of the protocol in which the
verifier makes a decision on effective possession of
required attributes by the prover based on the access
policy (statement S) and the proof message. In the
case of the proof of possession of specific attributes
with specific values as stated above, the verifier will
run the VerifyCL sub-prover

Performed by Verifier

Input 𝑆, (𝐶𝑜𝑚𝑚𝑜𝑛, 𝑐, 𝑠), 𝑛1

Output accept or reject of the proof

1. Retrieve the common values and the s-values and compute:

𝑇̂ = (
𝑍

(∏ 𝑅𝑖
𝑚𝑖

𝑖∈𝐴𝑟)(𝐴′)2ℓ𝑒−1
)

−𝑐

(𝐴′)𝑒̂ (∏𝑅𝑖
𝑚̂𝑖

𝑖∈𝐴ℎ

)(𝑆𝑣̂
′
)

2. Add 𝑇̂ to the t-value verification list {𝑇̂} and compute the challenge verification:

𝑐̂ = 𝐻(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|{𝒄𝒐𝒎𝒎𝒐𝒏}|{𝑇̂}|𝑛1)

3. If the challenge verification 𝑐̂ matches the challenge 𝑐 sent by the Prover, the verification is

successful, otherwise reject it.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

25

2.2.1.2 U-Prove

U-Prove [45] is a cryptographic protocol which assures the user's privacy by minimally disclosing the

certified attributes while interacting with an on-line entity. U-Prove has three actors: the prover (user),

the issuer and the verifier. The user to which is issued a cryptographic token interacts with the issuer

and the verifier through an issuance and a presentation protocol. The U-Prove token is a container of

attributes and it is digitally signed by the issuer entity. The token has a public key and a corresponding

private key (both generated at issuance time) which must be kept secret by the prover. The private

key can be used non-interactively by signing data which is later verified by the verifier or interactively

in the presentation protocol where the prover signs a message in order to prevent replay attacks and

demonstrate a proof-of-possession. The usage of the U-Prove token does not reveal the private key,

thus mitigating attacks like eavesdropping or replay. The U-Prove technology provides both

unlinkability and untraceability because the issuer executes a blind signature over the token and the

prover demonstrates the possession of undisclosed attributes by executing a zero-knowledge

protocol. Regarding the structure of the U-Prove token, it can contain a TI (Token Information) section

and a PI (Prover Information) section. The TI section can be used as a metadata section making the

token more informative: it can specify a validity period and is encoded by the Issuer, this section being

always disclosed at presentation time. Being always disclosed in the presentation protocol, the PI

section is encoded by the prover and is invisible for the issuer at issuance time. Each U-Prove token

has a unique identifier, this information being used in identifying repeated visitors of an online service

or for tracking revoked tokens. The U-Prove token identifier cannot be computed by the issuer, thus

preserving the unlinkability and untraceability security attributes. The U-Prove technology permits the

usage of a trusted device (smart card, mobile phone or even a trusted third-party server) on the prover

side, when issuing a token. The device acts as a U-Prove token extension, having a private key and

participating in the presentation protocol. The device can be used to extend multiple U-Prove tokens,

even if issued by different issuers. Concerning the repeating visitor scenario, the prover can encode a

pseudonym which permits the online service to recognize him even though using different U-Prove

tokens.

2.2.1.2.1 U-Prove Primitives

2.2.1.2.1.1 Issuer Primitives

The issuer parameters have the following form:

UID𝑝, 𝑑𝑒𝑠𝑐(𝐺𝑞), UID𝐻,(𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡),(𝑒1, . . . , 𝑒𝑛), S

UID𝑝is an octet string that holds an application-specific unique identifier for the Issuer parameters.

𝑑𝑒𝑠𝑐(𝐺𝑞) specifies a group 𝐺𝑞of prime order q.

UID𝐻 is an identifier for the hash algorithm.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

26

(𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡) is the Issuer’s public key. To generate 𝑔0, the issuer uses a private key 𝑦0: 𝑔0= 𝑔𝑦0

(𝑒1, . . . , 𝑒𝑛) is a list of byte values which state if the corresponding attribute values are hashed when

computing the public key.

S is an application specific octet string for the issuer parameters.

The application specific value n indicates the number of attributes encoded in each token.

Both the Verifier and the Prover must evaluate the Issuer parameters in the following way:

Input

 Group description: 𝑑𝑒𝑠𝑐(𝐺𝑞)= (p, q, g)

 Public generators: (𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡) ∈ 𝐺𝑞

Verify

 𝐺𝑞(if it is a subgroup construction)

 p and q are odd prime numbers

 q divides p-1

 𝑔 ∈ 𝐺𝑞and 𝑔 ≠ 1

Verify public key elements

 for 𝑖 ∈ 0,1,...,n, verify that 𝑔𝑖 ∈ 𝐺𝑞and 𝑔𝑖 ≠ 1

2.2.1.2.1.2 Device Parameters

Credential tokens can be device-protected and when so, the following is the required additional data:

 𝑔𝑑, 𝑥𝑑, ℎ𝑑

𝑔𝑑 ∈ 𝐺𝑞is the device generator and must be a generator of𝐺𝑞

 𝑥𝑑 ∈ ℤ𝑞
 *is the device’s private key.

ℎ𝑑= 𝑔𝑑
𝑥𝑑 ∈ 𝐺𝑞 is the device’s public key. This public key is known by the Prover and by the Issuer

during the issuance protocol. Both the Prover and the Issuer must verify that the device public key is a

valid element of 𝐺𝑞.

2.2.1.2.1.3 Token

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

27

The token has the following form:

UID𝑝, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, d

UID𝑝is an identifier for the issue parameters

ℎ ∈ 𝐺𝑞 is the token public key. It must be an element of 𝐺𝑞

𝑇𝐼 denotes the token information field. This section is always disclosed to the Verifier and contains

information like token usage restrictions or metadata.

𝑃𝐼 is the value of the prover information field. This section contains information asserted by the issuer

and is hidden from the Issuer. 𝑃𝐼 is always revealed during token presentation.

𝜎𝑧
′ ∈ 𝐺𝑞And (𝜎𝑐

′,σ𝑟
′) ∈ 𝑍𝑞form the issuer signature

Boolean d is used to indicate if token is protected by a device.

2.2.1.2.1.4 Token Private Key

The private key of the token is 𝛼−1 ∈ 𝑍𝑞
* ,α being a secret generated by the Prover in the issuance

protocol.

2.2.1.2.1.5 Token Public Key

The token public key has the following form:

h = (𝑔0𝑔1
𝑥1 ...𝑔𝑛

𝑥𝑛𝑔𝑡
𝑥𝑡[𝑔𝑑

𝑥𝑑])
𝛼

(𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡) ∈ 𝐺𝑞 is the Issuer's public key.

𝛼is a secret value generated by the prover.

𝑥𝑡 ∈ 𝑍𝑞is computed by hashing the issuance protocol version 0x01, a digest of the issuer parameters

and the 𝑇𝐼 field.

𝑔𝑑 ,x𝑑are present if the token is protected by a device.

𝑥𝑖 ∈ 𝑍𝑞 is obtained from the corresponding attribute value 𝐴𝑖either by hashing it (if 𝑒𝑖is 0x01) or by

encoding it directly (if 𝑒𝑖is 0x00).

The value of 𝑥𝑡 ∈ 𝑍𝑞is computed in the following way:

Input

 Issuer parameter fields: UID𝑝, 𝑑𝑒𝑠𝑐(𝐺𝑞), UID𝐻, (𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡), (𝑒1, . . . , 𝑒𝑛), S

 Token information field: 𝑇𝐼

 Device protected boolean: d

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

28

 [Device generator: 𝑔𝑑]

Computation

 P = H(UID𝑝, 𝑑𝑒𝑠𝑐(𝐺𝑞), UID𝐻, ⟨𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡 , [𝑔𝑑]⟩, ⟨𝑒1, . . . , 𝑒𝑛⟩, S)

 𝑥𝑡= H(0x01, 𝑃, 𝑇𝐼) → 𝑍𝑞

The values 𝑥𝑖are computed in the following manner:

Input

 Issuer parameter fields: q, UID𝐻, 𝑒𝑖

 Attribute value: 𝐴𝑖

Computation

 If 𝑒𝑖 = 0𝑥01

 If 𝐴𝑖= ∅ then 𝑥𝑖= 0

 Else 𝑥𝑖= 𝐻(𝐴𝑖)→ 𝑍𝑞

 Else if 𝑒𝑖 = 0𝑥00

 Verify that 0⩽A𝑖<q

 𝑥𝑖 = 𝐴𝑖

 Else return error

 Return 𝑥𝑖

2.2.1.2.1.6 Issuer Signature

The issuer signature is never seen by the Issuer and thus it cannot be used to link a specific token with

an issuance protocol. The signature has the following parameters 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′and is verified in the

following way:

Input

 Issuer parameter fields: 𝑑𝑒𝑠𝑐(𝐺𝑞), UID𝐻, 𝑔0

 Token fields: h, PI, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′

Verification

 Verify that ℎ ≠ 1

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

29

 𝜎𝑐
′

 Verify that 𝜎𝑐
′= H (h, 𝑃𝐼, 𝜎𝑧

′, 𝑔𝜎𝑟
′
𝑔0
−𝜎𝑐

′

, ℎ𝜎𝑟
′
(𝜎𝑧
′)−𝜎𝑐

′
)

2.2.1.2.1.7 Token Identifier

The token identifier is computed by hashing the token's public key and the Issuer's signature in the

following manner:

Input

 Issuer parameter field: UID𝐻

 Token fields: h, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′

Computation

 UID𝑇=H(h,σ𝑧
′ ,σ𝑐

′ ,σ𝑟
′)

2.2.1.2.2 U-Prove Protocols

2.2.1.2.2.1 Issuance Protocol

The issuance protocol requires a precomputation on both sides followed by the exchange of three

messages.

The following parameters are common for both the Prover and the Issuer:

 Issuer parameters: 𝑈𝐼𝐷𝑝, 𝑑𝑒𝑠𝑐(𝐺𝑞 , 𝑈𝐼𝐷𝐻 , (𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡), (𝑒1, . . . , 𝑒𝑛), 𝑆)

 Attributes: (𝐴1, . . . , 𝐴𝑛), 𝑇𝐼

 Device protected boolean: d

 [Device parameters: 𝑔𝑑 , ℎ𝑑]

2.2.1.2.2.2 Prover Precomputation

Input:

 𝑥𝑡:= 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑋𝑡(𝐼𝑃, 𝑇𝐼, 𝑑, [𝑔𝑑])

 𝑥𝑖: = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑋𝑖(𝐼𝑃, 𝐴𝑖)

 𝛾 = 𝑔0𝑔1
𝑥1...𝑔𝑛

𝑥𝑛𝑔𝑡
𝑥𝑡[ℎ𝑑]

 Prover information field 𝑃𝐼

Precomputation:

 Generate 𝛼at random from 𝑍𝑞
*

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

30

 Generate 𝛽1, 𝛽2at random from 𝑍𝑞

 h = 𝛾𝛼

 𝑡1 = 𝑔0
𝛽1𝑔𝛽2

 𝑡2=h
𝛽2

 Compute 𝛼−1modq

2.2.1.2.2.3 Issuer Precomputation

Input:

 𝑥𝑡=ComputeXt(𝐼𝑃, 𝑇𝐼, 𝑑, [𝑔𝑑])

 𝑥𝑖=ComputeXi(IP,A𝑖)

 𝛾 = 𝑔0𝑔1
𝑥1...𝑔𝑛

𝑥𝑛𝑔𝑡
𝑥𝑡[ℎ𝑑]

 Private key: 𝑦0 ∈ 𝑍𝑞

 𝜎𝑧=𝛾𝑦0

Precomputation:

 Generate w at random from 𝑍𝑞

 𝜎𝑎=g𝑤

 𝜎𝑏=𝛾𝑤

2.2.1.2.2.4 Exchanged Messages

A) The first message is sent from the Issuer to the Prover: (𝜎𝑧,σ𝑎,σ𝑏)

B) The second message is sent from the Prover to the Issuer: 𝜎𝑐

 𝜎𝑧
′=σ𝑧

𝛼

 𝜎𝑎
′=t1𝜎𝑎

 𝜎𝑏
′ = (𝜎𝑧

′)𝛽1𝑡2𝜎𝑏
𝛼

 𝜎𝑐
′=H(h,PI,σ𝑧

′ ,σ𝑎
′ ,σ𝑏

′) → 𝑍𝑞

 𝜎𝑐=σ𝑐
′ +β1modq

C) The third message is sent from the Issuer to the prover: 𝜎𝑟

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

31

 𝜎𝑟 = 𝜎𝑐𝑦0 +𝑤𝑚𝑜𝑑𝑞

D) The Prover generates the token

 𝜎𝑟
′=σ𝑟+β2modq

 Verify that 𝜎𝑎
′𝜎𝑏
′ = (gh)𝜎𝑟

′
(𝑔0𝜎𝑧

′)−𝜎𝑐
′

 Token T = UID𝑝, h, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, d

 Private key 𝛼−1

In Figure 5 the issuance protocol steps are depicted.

Figure 5 U-Prove Issuance protocol

2.2.1.2.2.5 Presentation Protocol

In the presentation protocol the Prover sends the token T, the subset of the attributes values it wants

to disclose to the Verifier and a presentation proof generated by applying the token private key to a

message and the non-disclosed attributes. The presentation proof is used to prove the integrity of the

disclosed attributes and to prevent replay attacks.

The presentation protocol can be split in two steps: proof generation and proof verification.

2.2.1.2.2.6 Proof Generation

 This step is a sub-protocol between the device and the Prover.

 Device input:

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

32

 Issuer parameters: 𝑑𝑒𝑠𝑐(𝐺𝑞), UID𝐻

 Device generator: 𝑔𝑑

 Private key: 𝑥𝑑

 Prover input:

 Issuer parameters: UID𝑝, desc(𝑑𝑒𝑠𝑐(𝐺𝑞)), UID𝐻, (𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡), (𝑒1, . . . , 𝑒𝑛), S

 Ordered indices of disclosed attributes: D ⊂ {1, ... , n}

 Ordered indices of undisclosed attributes: U = {1, ... , n} − D

 Ordered indices of committed attributes: C ⊂ U

 Pseudonym attribute index: p ∈ U ∪ {d}

 Pseudonym scope: s

 Messages: m, 𝑚𝑑

 Token T = UID𝑝, h, TI, PI, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, d

 Private key: 𝛼−1

 Attribute values: 𝐴1,...,A𝑛

 [Device generator: 𝑔𝑑]

 Compute 𝑥𝑖=ComputeXi(IP,A𝑖)

 Generate random 𝑤0, [𝑤𝑑] ∈ 𝑍𝑞

 For each i ∈ U generate random 𝑤𝑖 ∈ 𝑍𝑞

 A) The first message is sent from the Prover to the device: s

 B) The second message is sent from the device to the Prover: 𝑎𝑑 , [𝑎𝑝
′ , 𝑃𝑠]𝑝=𝑑

 Generate 𝑤𝑑
′ at random from 𝑍𝑞

 𝑎𝑑=g
𝑑

𝑤𝑑
′

 If 𝑠 ≠ ∅

 𝑔𝑠=GenerateScopeElement(desc(𝐺𝑞),s)

 𝑎𝑝
′ =g𝑠

𝑤𝑑
′

 𝑃𝑠=g𝑠
𝑥𝑑

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

33

 C) The third message is sent from the Prover to the device: 𝑐𝑝,m𝑑

 𝑎:= 𝐻 (ℎ𝑤0(∏ 𝑔𝑖
𝑤𝑖

𝑖∈𝑈)[𝑔𝑑
𝑤𝑑𝑎𝑑]𝑑)

 If 𝑝 ≠ ∅and 𝑠 ≠ ∅

 𝑔𝑠=GenerateScopeElement(desc(𝐺𝑞),s)

 𝑎𝑝 = 𝐻 (𝑔𝑠
𝑤𝑝[𝑎𝑝

′]
𝑝=𝑑

)

 [𝑃𝑠=g𝑠
𝑥𝑝]

𝑝≠𝑑

 Else 𝑎𝑝 = ∅and 𝑃𝑠 = ∅

For each i ∈ C

 Generate 𝑜𝑖~,𝑤𝑖~at random from 𝑍𝑞

 𝑐𝑖~ = 𝑔
𝑥𝑖𝑔1

𝑜𝑖~

 𝑎𝑖~ = 𝐻(𝑔
𝑤𝑖𝑔1

𝑤𝑖~)

 UID𝑇=ComputeTokenID(IP,T)

 If p = d then 𝑝′ = 0elsep′=p

 𝑐𝑝 = 𝐻(𝑈𝐼𝐷𝑇 , 𝑎, ⟨𝐷⟩, ⟨{𝑥𝑖}𝑖∈𝐷⟩, ⟨𝐶⟩, ⟨{𝑐𝑖~}𝑖∈𝐶⟩, ⟨{𝑎𝑖~}𝑖∈𝐶⟩, 𝑝
′, 𝑎𝑝, 𝑃𝑠, 𝑚)

 𝑐 = 𝐻(⟨𝑐𝑝, 𝑚𝑑⟩) → 𝑍𝑞

 𝑟0=cα−1+w0modq

 For each i ∈ U, 𝑟𝑖 = −cx𝑖+w𝑖modq

 D) The fourth message is sent from the device to the Prover: 𝑟𝑑
′

 𝑐 = 𝐻(⟨𝑐𝑝, 𝑚𝑑⟩) → 𝑍𝑞

 𝑟𝑑
′ = −𝑐𝑥𝑑 +𝑤𝑑

′𝑚𝑜𝑑𝑞

 E) The Prover created the presentation proof:

 [𝑟𝑑 = 𝑟𝑑
′ +𝑤𝑑𝑚𝑜𝑑𝑞]𝑑

 For each i ∈ C, 𝑟𝑖~ = −𝑐𝑜𝑖~ + 𝑤𝑖~𝑚𝑜𝑑𝑞

 Presentation proof: {𝐴𝑖}𝑖∈𝐷 , 𝑎, (𝑎𝑝, 𝑃𝑠), 𝑟0, {𝑟𝑖}𝑖∈𝑈, [𝑟𝑑]𝑑 , {(𝑐𝑖~, 𝑎𝑖~, 𝑟𝑖~)}𝑖∈𝐶

 Secret commitment values: 𝑜𝑖~

2.2.1.2.2.7 Proof verification

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

34

 Input:

 Issuer parameters: UID𝑝, 𝑑𝑒𝑠𝑐(𝐺𝑞), UID𝐻, (𝑔0, 𝑔1, . . . , 𝑔𝑛, 𝑔𝑡), (𝑒1, . . . , 𝑒𝑛), S

 Ordered indices of disclosed attributes: D ⊂ {1, ... , n}

 Ordered indices of undisclosed attributes: U = {1, ... , n} − D

 Ordered indices of committed attributes: C ⊂ U

 U-Prove token

 Pseudonym attribute index: p ∈ U ∪ {d}

 Pseudonym scope: s

 Messages: m, 𝑚𝑑

 Presentation proof: {𝐴𝑖}𝑖∈𝐷 , 𝑎, (𝑎𝑝, 𝑃𝑠), 𝑟0, {𝑟𝑖}𝑖∈𝑈, [𝑟𝑑], {𝑐𝑖~, 𝑎𝑖~, 𝑟𝑖~}𝑖∈𝐶

 [Device generator: 𝑔𝑑]

 Token verification:

 VerifyTokenSignature(IP, T)

 Presentation proof verification:

 𝑥𝑡:= 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑋𝑡(𝐼𝑃, 𝑇𝐼, 𝑑, [𝑔𝑑])

 For each i ∈ D, 𝑥𝑖=ComputeXi(IP,A𝑖)

 UID𝑇=ComputeTokenID(IP,T)

 If p = d then 𝑝′: = 0𝑒𝑙𝑠𝑒𝑝′: = 𝑝

 𝑐𝑝: = 𝐻(𝑈𝐼𝐷𝑇 , 𝑎, ⟨𝐷⟩, ⟨{𝑥𝑖}𝑖∈𝐷⟩, ⟨𝐶⟩, ⟨{𝑐𝑖~}𝑖∈𝐶⟩, ⟨{𝑎𝑖~}𝑖∈𝐶⟩, 𝑝
′, 𝑎𝑝, 𝑃𝑠, 𝑚)

 𝑐: = 𝐻(⟨𝑐𝑝, 𝑚𝑑⟩) → 𝑍𝑞

 Verify that a=H ((𝑔0𝑔𝑡
𝑥𝑡∏ 𝑔𝑖

𝑥𝑖
𝑖∈𝐷)

−𝑐
ℎ𝑟0(∏ 𝑔𝑖

𝑟𝑖
𝑖∈𝑈)[𝑔𝑑

𝑟𝑑])

 If 𝑎𝑝 ≠ ∅and 𝑃𝑠 ≠ ∅

 𝑔𝑠=GenerateScopeElement(desc(𝐺𝑞),UID𝐻,s)

 Verify that 𝑎𝑝=H(𝑃𝑠
𝑐,g𝑠

𝑟𝑝)

 For each i ∈ C, verify that 𝑎𝑖~ = 𝐻(𝑐𝑖
𝑐~𝑔𝑟𝑖𝑔1

𝑟𝑖~)

In Figure 6 are depicted the presentation protocols main steps.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

35

Figure 6 U-Prove Presentation Protocol

2.2.1.3 Attribute Based Encryption

Attribute Based Encryption (ABE) is an emergent new kind of asymmetric cipher. Similar to ordinary

public key encryption schemes, a content is encrypted using a public key which does not reveal any

information useful to decrypt the data, e.g. the private key. However, unlike ordinary public key

schemes, the decryption key is not unique, but multiple users, having different keys, may decrypt the

same message. Furthermore, and distinguishing feature of ABE, a user can decrypt a message only if

the user is provided with a set of attributes which satisfy a given policy.

We are specifically interested in a variant of ABE called Ciphertext Policy, CP-ABE, where the policy

which needs to be satisfied by the user’s attributes is directly integrated in the encrypted data itself,

hence it “travels” with the data. Note that the combination of encryption (for confidentiality) and

policy (for access control) in CP-ABE appears to be an extremely convenient approach for services that

requires to release a specific resource outside of the trusted limits. This is best understood going into

an example scenario using CP-ABE as cryptographic technique.

Let us assume that a content provider P wishes to encrypt a message M for a given set of users without

the need to know a priori the identity of each individual user which shall be able to access the data,

but wants to permit access to the data only to users which satisfy a given policy  expressed in terms

of attributes associated to the end users. Such a policy can be any arbitrary combination of “AND” and

“OR” conditions, for instance

italy:citizen AND job:executive) OR (job:doctor)

Notably, at encryption time, the content provider only requires to know:

 the subset of attributes of interest, which are ordinary natural language strings

 the public key of the authority which has issued such attributes (as discussed later, CP-ABE

was recently extended to operate with multiple non-coordinating authorities).

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

36

Not only CP-ABE does not require the content provider to a priori know the set of users which will be

able to access the message, but it completely decouples the encryption process from the management

of the user attributes. Indeed, suppose that CP-ABE encryption of a message M using policy  occurs

at a given time, say t1. Let E[M] be the resulting ciphertext, where we use a notation which highlights

the fact that the policy  is indeed integrated in the encrypted data itself. Suppose now that, at a

subsequent time t2>t1, a new user, say Ux, needs to be added to the set of users allowed to access the

message. The user just need to retrieve the attributes required to decrypt and, such operation can be

performed offline and once-for-all by contacting the related issuing authorities. The data itself does

not require modification and continue to travel in the network or on untrusted storage without losing

security capabilities.

2.2.1.3.1 A multi-authority CP-ABE architecture

The concept of CP-ABE has been originally introduced by Bethencourt, Sahai and Waters in 2007 [23].

This first construction however had a significant practical limitation in the fact that attributes were

issued by a single, global, authority. In order to overcome such a limitation, the cryptographic

community attempted to devise multi-authority CP-ABE schemes, with the first proposal in this field

being a paper by Chase [46]. However, this first multi-authority proposal, as well as the subsequent

extensions, still required some form of cooperation (at least offline) among the authorities. In the real

world, such form of cooperation is deemed to be unviable, as it would force all possible authorities

(ranging from banks, governments, visa offices, and even individuals) to interact at least once each

other, as well as re-run a cooperation protocol every time a new authority is deployed. Also, mostly

for this reason, CP-ABE did not have any notable practical success outside the restricted community

of cryptographic researchers.

In a breakthrough paper, dated 2011 [47], Lewko and Waters proposed the first fully decentralized

CP-ABE construction, thus broadly extending CP-ABE’s application range and make it fitting the real

world needs of large scale networks and deployments. In this context, fully decentralized means that

access policies can be specified over an arbitrary set of attributes issued by multiple independent and

not cooperating authorities (possibly not even knowing each other’s existence). The far from being

trivial technical challenge solved in [47] was the construction of a scheme resistant to collusion among

users; in other words, if user U1 holds attribute attr1 issued by an authority A1 and user U2 holds

attribute attr2 issued by a different authority A2 which has never cooperated or exchanged any

information with A1, and even if the two users collude by exchanging their secrets associated to such

attributes, as well as any other possible information locally held by the two users, it should be

impossible (computationally hard) for each of these users to decrypt a message encrypted with the

policy attr1 AND attr2). We refer the reader to the original work [47] for the cryptographic

construction details. Despite the original construction [47] still suffers of some minor technical

limitations, we believe that the notion of independent and fully decentralized authority therein

exploited very well fits with the real-world needs.

Motivated by the availability of an actual, fully decentralized, multi-authority CP-ABE cryptographic

construction, in what follows we preliminary sketch a multi-authority CP-ABE-based security

architecture.

Attribute-issuing authorities. An authority Ai is any arbitrary entity (hence even including individual

users) which autonomously decides to issue attributes. The set-up of an authority is thus an

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

37

independent decision, and does not require any coordination or interaction with a global authority.

The only requirement an authority must adhere is to use a same set of globally-defined and publically

known system parameters (in essence, a small set of standardized parameters, which, to make an

illustrative example for the the specific CP-ABE setting of [47], appendix D, simply consist in a bilinear

group 𝔾 of prime order p, in a generator g of the prime order group, and in a hash function H mapping

global identity names into points of the group𝔾). An authority x will be characterized by a pair of keys:

a public key Ax,PK, and an associated secret key Ax,SK. An authority is univocally identified by its public

key: since this public key cannot be decided by the authority, but is computed by a cryptographic

algorithm, the possibility that two authorities shall have the same PK is negligible. Although not

technically necessary, if human readable names shall be used for authorities, an ordinary PKI must be

supplementary used to bind the authority’s public key to its real world name, and avoid authority

impersonation attacks. More formally, we summarize the set up of an authority with a publically

known algorithm:

Ax.AUTHORITY_SETUP(global parameters)  Ax,PK, Ax,SK

which is independently run by each authority, and which computes the authority’s public and private

key pair.

Attributes. An attribute is a plain text string defined by, and associated to, an authority. For instance,

an attribute can be as general as the string “visa” associated to a country-wide immigration authority

and used to grant access permissions to a given country, or as specific as the string “office-mate”

issued by an individual. Attributes shall not need to be globally unique (thus simplifying naming issues),

but just need to be unique inside a same authority. For example, two countries (say Russia and Japan)

can issue the same attribute string named “visa”, but these two attributes are different as they are

issued by different authorities. Whenever ambiguity occurs, we will use the scope symbol “:” to

differentiate the two attributes, e.g. Russia:visa versus Japan:visa, but we stress that this is just a

notational convenience and not the bit string associated to the actual attribute (which, in both cases,

it is simply the string “visa”).

Attribute-issuing procedure and Global identity names. In order to get an attribute from an authority,

a user must have a global identity name, called UID (user ID), which must be a globally unique bit-

string, for instance, an email address. Attributes issued to different identity names (even if belonging

to a same human user, e.g. two different email addresses) will not be combined in a same access

control policy. For instance, if the same human user holds two identity names, e.g. foo@mail.com

holding attribute x and foo@recred.com being issued attribute y, the user will not be able to access a

data encrypted with CP-ABE using the policy (x AND y). In order to be granted an attribute, a user will

offline submit to an authority its global identity name, and if the authority decides to issue the

required attribute, the user will receive back a secret key uniquely associated to both the user as well

as the attribute. Note that this implies that different users will get different secrets for the same

attribute. Formally, we summarize the attribute issuing procedure as an algorithm

Ax.ATTRIBUTE_ISSUING(UID, attr_j, Ax,SK)  KUID,attr_j

Where UID is the global identity name of the user, attr_j is the issued attribute name, Ax,SK is the

Authority secret key, and KUID,attr_j is the secret key released to the user for the considered attribute.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

38

This algorithm shall be executed by the authority, and the resulting secret key shall be provided to the

user via a secure channel.

Note that the compelling aspect of the above sketched architecture resides in the fact that it does not

specify any necessary system component (e.g. unlike IPsec, where security associations require to be

supported by security association databases and security policy databases). The trust model

underlying the access control operation is mandated to individual trust relations (which can

eventually, but not necessarily, exploit a certification PKI infrastructure) among entities and attribute-

issuing authorities, rather than to a trust infrastructure. This can be very clearly highlighted through

the following encryption use-case example. Assume that user Ux decides to share a message M

encrypted with the policy

Italy:citizen AND age:greater_than_18 AND Ux:friend) OR (italian_police:officer)

where attributes are written using scope notation (i.e., authority:attribute). In order to encrypt

message M, the user needs to decide/have:

 the attribute bit strings, i.e. “citizen”, “greater_than_18”, “friend”, and “officer”;

 the access control policy;

 the public keys of the four involved authorities, i.e.

o a national authority from Italy which releases citizenship permissions;

o an authority which certifies, by issuing a relevant attribute, that an user has an age

greater than 18;

o a national police authority, and

o the user herself; indeed, since any entity can become authority, the user can as well

decide to issue her own attributes, such as the “friend” attribute highlighted in the

policy.

Once the message is encrypted, the user knows that the message will be accessed only by other users

which have been issued a set of attributes by the specific authorities considered. Indeed, the

encryption of a message is performed by ciphering the message using the attribute bit strings as well

as the public keys of the relevant authorities which are in charge of issuing the given attributes. Note

that this is a significant generalization of the ordinary asymmetric public key encryption, with the

notable difference that the public key used during encryption is not anymore, the one of the recipient

of the message, but are those of the attribute issuing authorities. In essence, in terms of trust, CP-ABE

implies that the user just relies on her individual trust in the specific authorities involved, which are

identified through their public keys.

Since Attribute Based Encryption schemes realize an implicit access control mechanism on the

encrypted data, we believe that the ReCRED ABAC architecture could benefit of the usage of such

techniques. Indeed, it can be used both to realize an access control on static data distributed in the

network (data encryption) both an access control for the user (token encryption).

2.2.1.4 Credential Revocation

When using anonymous credentials in the real-world environment, there are additional requirements

that should be considered in the design of the architecture. One of these requirements is the need to

have the functionalities and entities to enable the revocation of the credentials issued to a user.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

39

In traditional systems based on a Public Key Infrastructure (PKI) the common adopted approach is to

publish a list (Certificate Revocation List - CRL) of serial numbers related to revoked

certificates/credentials. Another approach, alternative to the CRL one, is to enable the

authority/issuer to be queried by users about the effective validity of a specific certificate by running

a protocol like the Online Certificate Status Protocol (OSCP). Unfortunately, this kind of approaches

cannot work in systems like ReCRED and related Anonymous Credential Systems exploited to design

the P-ABAC architecture. Indeed, it would compromise the anonymity and the privacy of the users in

contrast with the ReCRED platform where the highest priority is to maintain the anonymity of the

users.

In anonymous credential systems, indeed, the credential specific identifier is no longer revealed since

this is one of the key requirements of anonymous credentials. In what follows we presents some of

the several revocation strategies [1] for anonymous credentials proposed in literature.

2.2.1.4.1 Verifiable Encryption

Although verifiable encryption is often cited in anonymous credential schemes related to anonymity

revocation [2][3], it could be exploited to enable revocation capabilities. Hence, the user encrypts by

using verifiable encryption the credential’s identifier with the public key of the credential’s issuer. To

verify the revocation status, the verifier sends the ciphertext to the issuer. The issuer decrypts the

ciphertext and is able to use the obtained identifier to do a simple lookup of the revocation status of

the corresponding credential and provide the result back to the verifier. This solution is closely related

to the OCSP protocol in traditional PKI systems. However, the issuer must act as a completely trusted

party by the user’s point of view, since it is able to monitor and track the usage of the credential (i.e.

to which verifier the credential is shown). A possible solution is to require the service provider to make

this request over an anonymous channel. Furthermore, replacing the public key of the issuer with the

public key of another trusted third party, allows to have a separate authority in charge of the

revocation tasks. Moreover, if the encrypted identifier is replaced with a domain specific pseudonym,

a domain specific revocation authority may take care of access control in a certain domain. Another

obvious drawback of this solution is given by the requirement of having all partners online when

verifying credentials.

2.2.1.4.2 Limited Lifetime

In this approach, an attribute expressing the lifetime of the credential, is enclosed in the credential.

When performing a proof of possession of the credential, the user also proves that the credential has

not expired. The lifetime of a credential highly determines the usability of the revocation scheme:

 Short lifetime requires the user to frequently re-validate the credential and makes the scheme

suitable to fit revocation requirements.

 Long lifetime makes the scheme insecure and not usable for revocation purposes.

Instead of reissuing new credentials just to extend the lifetime period, Camenisch et al. [4] pointed

out that non-interactive credential updates can be a useful replacement. The issuer generates

credential update info for all valid credentials before the end of the credential’s lifetime is reached.

Before the user can send the proof to the verifier, the user needs to download this information and

update his credential lifetime. Obviously, a credential to be revoked will not be updated by the issuer

and the user will not be able to extend the credential’s lifetime.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

40

2.2.1.4.3 Signature Lists
Similar to CRLs in traditional schemes, it is possible to design anonymous revocation lists in anonymous

credential systems. However, in order to guarantee the anonymity preservation, the verification of a

credential validity results to be more complex. Instead of the verifier performing the verification of

the validity of the credential, the user has to prove that the credential he is using is not revoked by

the related issuer. This approach, as well as in CRL-based systems, can be provided by following two

approaches:

 Whitelist: the issuers of the system maintain a list of valid credentials removing from that list

the credentials to be revoked. The list consists of signatures on the identifiers of each valid

credential and a list identifier. The user selects the signature in the whitelist containing the

identifier of his credential and then proves knowledge of the identifier together with the proof

that the credential identifier in the signature is the same as the one contained in the credential

being validated. Additionally, the list identifier is revealed, such that the verifier can check

that the updated (latest) published list was used.

 Blacklist: opposite to the whitelist approach, the maintained list comprises all the revoked

credentials. Proving non-membership is more complex than proving membership to the

whitelist. T. Nakanishi et al. [5] propose an elegant solution by ordering the list of revoked

identifiers. For each consecutive pair of identifiers, the issuer publishes a signature on the

pair, together with an identifier of the list. During a credential show, the user then proves

knowledge of his credential and a signature from the blacklist, such that the identifier in the

credential lies between two revoked identifiers in the ordered blacklist. Similar as in the case

of whitelists, the disclosed list identifier shows that the latest revocation list was used. If this

proof verifies successfully, the verifier is ensured that the credential is valid with respect to

the latest published blacklist.

In this approach, for every change that requires the removal of a signature from a whitelist or addition

to the blacklist, the issuer has to rebuild the entire revocation list with a new list of identifiers. In case

of a join in the whitelist, it is sufficient to add only one signature to the latest whitelist. Likewise, re-

approving a previously revoked credential can be done by replacing two consecutive signatures by

one new signature. Nevertheless, in both schemes proving membership or non-membership results

in a non-negligible, but constant overhead.

2.2.1.4.4 Dynamic Accumulators

A more complex, but possibly more efficient solution for credential revocation is based on the so-

called dynamic accumulators [6][7][8]. The user needs to prove membership or non-membership in

the accumulator. The verifier therefore fetches the latest accumulator value from a revocation

authority and if the proof of the credential show verifies correctly w.r.t. that accumulator value, the

service provider is ensured that the credential has not been revoked. Except for the verification of a

more elaborate proof, the service provider has no additional overhead. On the other hand, although

building this proof can be done quite efficiently, it requires the user to first update its witness to enable

proving (non-)membership in the accumulator, which is time-consuming. Moreover, since revoking

and possibly also adding credentials to the group change the value of the accumulator, a witness

update is required. These updates require resources depending linearly to the number of added or

revoked credentials from the accumulator.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

41

2.2.1.4.5 ReCRED Credentials Revocation

The ReCRED Attribute Based Access Control infrastructure will provide revocation functionalities for

issued credentials considering two possible scenarios distinguished by the required level of privacy.

ReCRED will exploit the Verifiable Encryption (VE) method to enable revocation of issued credentials

in scenarios where the user accepts the eventual disclosure to the issuer of the service provider he

accessed (renouncing de-facto to un-traceability properties). In scenarios where it is not possible,

since the user cares of un-traceability, ReCRED will exploit the Limited Lifetime (LL) with very short

validity time of credentials (based on the context) approach that results to be scalable and efficient in

terms of performances.

2.2.2 Common Interfaces and Protocols

The Idemix and U-Prove prototypes described below, in Chapter 3, employ common protocols and

interfaces that are described in this section. We plan to extend them to enable ABE-based access

control as well.

2.2.2.1 FIWARE Privacy Open RESTFul API

FIWARE [48] is an open platform that aims to provide a novel service infrastructure to an easier

development of future Internet applications. The FIWARE project is the core part of the Future

Internet PPP program, a joint initiative by the European Industry and the European Commission.

The open and independent FIWARE community is formed by many individuals and organizations that

agree on the FIWARE mission: “to build an open sustainable ecosystem around public, royalty-free

and implementation-driven software platform standards that will ease the development of new Smart

Applications in multiple sectors”.

The FIWARE platform is the heart of the project and it is mainly focused on technological aspects.

Nevertheless, other non-technical relevant activities like FIWARE Lab, FIWARE Accelerator, FIWARE

mundus or FIWARE iHubs are important components of the FIWARE ecosystem.

The novel FIWARE infrastructure is built upon basic atomic elements called generic enablers (GE).

These are software tools that provide a number of general-purpose functions and are freely available

in the rich library of the FIWARE Catalogue. This design makes the development of new services

quicker and easier by combining more GE in a modular approach.

Furthermore, each GE is offered through well-defined API (Application Programming Interfaces),

easing the development of smart applications in multiple sectors. The set of FIWARE RESTful API

specifications [49] cover a wide range of different application domains like Cloud Hosting, Internet of

Things, security or networks and devices interfaces.

Related to the security area, more security and privacy aspects are in turn taken into consideration

and the APIs for Privacy-preserving Authentication in an attribute based infrastructure are well

defined too. FIWARE security specifications are based on the ABC4Trust specifications [50] which

propose a cryptographic agnostic attribute credential protocol, thus supporting both Idemix and U-

Prove. In particular, the FIWARE Privacy GE (Generic Enabler) specifies the API for a P2ABC (Privacy-

Preserving Attribute Based Credentials) system.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

42

These APIs describe the endpoints of the main roles that take place in an anonymous authentication

system, i.e. Issuers, Users and Verifiers. The APIs are RESTful, resource-oriented, and are accessed via

HTTP using XML-based representations for information interchange.

In Table 1, Table 2 and Table 3 the FIWARE APIs for Issuer, User and Verifier are summarized. The

tables specify the HTTP method, the URL path, the data given as input inside the body of the request

and the returned data in the response. If some parameters can be specified along with the URL path,

these are listed above the path.

Table 1 Issuer API

METHOD PATH INPUT OUTPUT DESCRIPTION

GET /issuer/setupSystemParameters/
securityLevel

SystemParameters
generates a fresh set of system
parameters for the given security
level cryptoMechanism

POST /issuer/setupIssuerParameters/ IssuerParametersInput IssuerParameters
generates a fresh issuance key
and the corresponding issuer
parameters

POST /issuer/initIssuanceProtocol/ IssuancePolicyAndAttributes
IssuanceMessageAndBo

olean

Initiate an issuance protocol
based on the given issuance
policy and the list of attributes to
be embedded in the new
credential.

POST /issuer/issuanceProtocolStep/ IssuanceMessage
IssuanceMessageAndBo

olean
performs one step in an
interactive issuance protocol

GET
/issuer/getIssuanceLogEntry/

issuanceEntryUid IssuanceLogEntry

looks up an issuance log entry of
previously issued credentials

Table 2 User API

METHOD PATH INPUT OUTPUT DESCRIPTION

POST /user/canBeSatisfied/ PresentationPolicyAlternatives ABCEBoolean

on input a presentation policy,
decides whether the credentials
in the user's credential store
could be used to produce a valid
presentation token satisfying the
policy

POST /user/createPresentationToken/ PresentationPolicyAlternatives
UiPresentationArgument

s

returns an argument to be
passed to the UI for choosing
how to satisfy the policy

POST /user/createPresentationTokenUi/ UiPresentationReturn PresentationToken

generates a presentation token
that reflects this choice, and
which satisfies the respective
presentation policy alternatives

POST /user/issuanceProtocolStep IssuanceMessage IssuanceReturn
performs one step in an
interactive issuance protocol

POST /user/issuanceProtocolStepUi/ UiIssuanceReturn IssuanceMessage
Called after the user has made
her choice on how to satisfy the
issuance policy

POST /user/updateNonRevocationEvidence/
updates the non-revocation
evidence associated to all
credentials in the credential store

GET
/user/listCredentials/

 URISet

This method returns an array of
all unique credential identifiers
(UIDs) available in the Credential
Manager

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

43

GET
/user/getCredentialDescription/{creden

tialUid} credentialUid CredentialDescription
returns the description of the
credential with the given unique
identifier.

DELETE
/user/deleteCredential/

credUid ABCEBoolean
deletes the credential with the
given identifier from the
credential store

Table 3 verifier API

METHOD PATH INPUT OUTPUT DESCRIPTION

POST
/verification/verifyTokenAgainstPolicy/

PresentationPolicyAlternatives

PresentationTokenDescr
iption

Checks whether the token
satisfies the policy and checks the
validity of the cryptographic
evidence included in token.
Stores the token in a dedicated
store if store is set to true

PresentationToken

store

GET
/verification/getToken/

tokenUID PresentationToken
looks up a previously verified
presentation token

POST
/verification/deleteToken/ tokenUID

Boolean
deletes the previously verified
presentation token

2.2.2.1.1 Data format

The relevant data defined in FIWARE and involved in the system setup, issuance and verification

phases are summarized above. Moreover, FIWARE specifies an identity selection component, involved

both in the issuance and verification phases when the user has to choose a preferred combination of

credentials and/or pseudonyms.

A more detailed description of the artifacts can be found at [49].

2.2.2.1.2 System parameters

The generic ABCE (ABC Engine) provides 4 setup methods:

 setupSystemParameters. This method generates new system parameters (e.g. size of

secrets, size of moduli, prime probability, etc.)

 setupIssuerParameters. This method generates a secret issuance key and public issuer

parameters.

 setupRevocationAuthorityParameters. This method generates a secret Revocation

Authority key.

 setupInspectionPublicKey. This method generates a secret decryption key and a public

encryption key for the Inspector.

The credential specification describes the contents of the credentials. It has the following form:

<abc:CredentialSpecification Version=”1.0” KeyBinding=”xs:boolean”

Revocable="xs:boolean">

 <abc:SpecificationUID>xs:anyURI</abc:SpecificationUID>

 <abc:numericalId>xs:integer</abc:numericalId>?

 <abc:FriendlyCredentialName xml:lang=”xs:language”/>*

 <abc:DefaultImageReference>xs:anyURI</abc:DefaultImageReference>?

 <abc:AttributeDescriptions MaxLength=”xs:unsignedInt”>

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

44

 <abc:AttributeDescription Type=”xs:anyURI” DataType=”xs:anyURI”

Encoding=”xs:anyURI”>

 <abc:FriendlyAttributeName

lang=”xs:language”>xs:string</abc:FriendlyAttributeName>*

 <abc:AllowedValue>...</abc:AllowedValue>*

 </abc:AttributeDescription>*

 </abc:AttributeDescriptions>

<abc:CredentialSpecification>

The elements presented above describe the following attributes:

/abc:CredentialSpecification

This element contains the credential content.

/abc:CredentialSpecification/@Version

This element specifies the version of the credential content.

/abc:CredentialSpecification/@KeyBinding

This element specifies whether the credential content is bound with a secret ley.

/abc:CredentialSpecification/@Revocable

This element specifies whether the credential content is revocable or not.

/abc:CredentialSpecification/SpecificationUID

This element contains an identifier for the credential specification.

/abc:CredentialSpecification/abc:NumericalId

This element contains a numerical identifier for the credential specification.

/abc:CredentialSpecification/abc:FriendlyCredentialName

This element contains a friendly name for the credential.

/abc:CredentialSpecification/abc:FriendlyCredentialName/@lang

This attribute contains a localization for the credential.

/abc:CredentialSpecification/abc:DefaultImageReference

This element contains a reference to the default image for the issued credential.

/abc:CredentialSpecification/abc:AttributeDescriptions

This element contains the description of the issued attributes.

/abc:CredentialSpecification/abc:AttributeDescriptions/abc:AttributeDescription

This element contains the description of one attribute.

/abc:CredentialSpecification/abc:AttributeDescriptions/abc:AttributeDescription/@Ma

xLength

This attribute specifies the maximal length in bits of the integers to which attribute values are mapped

using the encoding function

/abc:CredentialSpecification/abc:AttributeDescriptions/abc:AttributeDescription/@Ty

pe

This attribute contains a unique identifier of an attribute type.

/abc:CredentialSpecification/abc:AttributeDescriptions/abc:AttributeDescription/@Da

taType

This attribute contains the data type of the credential attribute.

/abc:CredentialSpecification/abc:AttributeDescriptions/abc:AttributeDescription/@En

coding

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

45

This attribute specifies the method for mapping an attribute to an integer value.

.../abc:AttributeDescriptions/abc:AttributeDescription/FriendlyAttributeName

This element contains a friendly name for the attribute.

.../abc:AttributeDescriptions/abc:AttributeDescription/FriendlyAttributeName/@lang

This attribute specifies a language identifier for the attribute friendly name.

/abc:CredentialSpecification/abc:AttributeDescriptions/abc:AllowedValue

This element specifies a list of permitted values for the attribute.

In order for multiple issuers to agree on the cryptographic parameters to use throughout the system,

all entities in the system must agree on one set of system parameters. These parameters have to be

generated once, before any of the issuer parameters and other keys are generated. The system

parameters have the following form:

<abc:SystemParameters Version=”1.0” SystemParametersUID=”xs:anyURI”>

 <abc:CryptoParams>...</abc:CryptoParams>

</abc:SystemParameters>

The elements described above have the following meaning:

/abc:SystemParameters

This element contains the system parameters.

/abc:SystemParameters/@Version

This attribute specifies the system parameters version.

/abc:SystemParameters/@SystemParametersUID

This attribute specifies a unique identifier for the system parameters.

/abc:SystemParameters/abc:CryptoParams

This element contains the specific cryptographic elements for the system.

In order to issue credentials, the Issuer must specify system parameters, and generate a key pair

consisting of a secret issuing key and a public verification key. The issuer parameters artifact is

described below.

<abc:IssuerParameters Version=”1.0”>

<abc:ParametersUID>xs:anyURI</abc:ParametersUID>

<abc:FriendlyIssuerDescription

lang=”xs:language”>xs:string</abc:FriendlyIssuerDescription>*

<abc:AlgorithmID>xs:anyURI</abc:AlgorithmID>

<abc:SystemParametersUID>xs:anyURI</abc:SystemParametersUID>

<abc:MaximalNumberOfAttributes>xs:int</abc:MaxNumberOfAttributes>

<abc:HashAlgorithm>xs:anyUID</abc:HashAlgorithm>

<abc:CryptoParams>...</abc:CryptoParams>

<abc:RevocationParametersUID>...</abc:RevocationParametersUID>?

</abc:IssuerParameters>

The issuer parameters elements presented above describe the following attributes:

/abc:IssuerParameters

This element contains the issuer public parameters.

/abc:IssuerParameters/@Version

This attribute contains the version for the issuer parameters.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

46

/abc:IssuerParameters/abc:ParametersUID

This element contains an identifier for the issuer parameters.

/abc:IssuerParameters/abc:FriendlyIssuerDescription

This element contains a friendly description for the issuer parameters.

/abc:IssuerParameters/abc:FriendlyIssuerDescription/@lang

This attribute contains a localization for the issuer parameters friendly name.

/abc:IssuerParameters/abc:AlgorithmID

This element contains the algorithm for the issuer parameters. The algorithms are Idemix

(urn:abc4trust:1.0:algorithm:idemix) and U-Prove (urn:abc4trust:1.0:algorithm:U-Prove).

/abc:IssuerParameters/abc:SystemParametersUID

This element contains an identifier for the system parameters used with the described issuer

parameters.

/abc:IssuerParameters/abc:MaximalNumberOfAttributes

This element specifies the maximum number of issued attributes.

/abc:IssuerParameters/abc:HashAlgorithm

This element identifies the hash algorithm which will be used to generate the presentation token.

/abc:IssuerParameters/abc:CryptoParams

This element contains cryptographic element specific to the employed algorithm.

/abc:IssuerParameters/abc:RevocationParametersUID

This element contains an identifier for the revocation authority.

In order for the Verifier to communicate to the User which cryptographic algorithms it supports, and

provide additional parameters for these algorithms, the verifier must generate a set of verifier

parameters and send them to the User. How this artifact is protected (authenticated) is application

specific.

<abc:VerifierParameters Version=”1.0” VerifierParametersId=”xs:anyURI”

SystemParametersId=”xs:anyURI”>

 <abc:CryptoParams>...</abc:CryptoParams>

</abc:VerifierParameters>

2.2.2.1.3 Issuance

ABC4Trust and FIWARE propose an identical RESTful protocol message specification. Regarding the

attribute token issuance, the user cannot choose or bias the value assigned to the attribute.

The issuer publishes or sends to the User an issuance policy consisting of a presentation policy (which

credentials the user must possess in order to be issued an attribute token) and a credential template.

The user prepares a special presentation token that fulfills the stated presentation policy, but that

contains additional cryptographic information to enable carrying over attribute, user binding, and

device binding information.

The User and Issuer subsequently engage in a multi-round issuance protocol, at the end of which the

user obtains the requested credential.

ABC4Trust specifies 2 types of issuance: simple issuance (e.g. regular U-Prove issuance) and advanced

issuance (the attributes are derived from an existing token). We will describe the simple issuance

variant.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

47

The issuance steps are as follows:

1. The user authenticates to the issuer

2. The user specifies which attributes will be issued.

3. The issuer will invoke a generic initIssuanceProtocol() method with a set of attributes

that shall be certified in the new credential and with an issuance policy that only contains the

identifiers of the credential specification and the issuer parameters of the credential that is to

be issued. This call initiates an action in the (CE) Crypto Engine (an entity responsible with the

underlying crypto implementation – U-Prove). This method returns an issuance message sent

to the user.

4. Both sides call a generic issuanceProtocolStep() which is called until a credential is

issued.

By using such a strategy, the issuance protocol is implementation agnostic.

Any message exchanged in the issuance protocol will be wrapped as an issuanceMessage. Because the

issuance protocol contains multiple steps, each message includes a Context attributes.

<abc:IssuanceMessage Context=”...”>

</abc:IssuanceMessage>

/abc:IssuanceMessage

This element contains an issuance policy, issuance token or a mechanism specific cryptographic data.

/abc:IssuanceMessage/@Context

This attribute contains a context for the issuance message.

On the server side, all issued tokens must be logged.

When the issuance protocol is completed, the user obtains a credential which has the type

CredentialDescription.

<abc:CredentialDescription RevokedByIssuer=”xs:boolean”?>

 <abc:CredentialUID>

 ...

 </abc:CredentialUID>

 <abc:FriendlyCredentialName lang=”xs:language”>

 xs:string

 </abc:FriendlyCredentialName>*

 <abc:ImageReference>

 xs:anyURI

 </abc:ImageReference>?

 <abc:CredentialSpecificationUID>

 ...

 </abc:CredentialSpecificationUID>

 <abc:IssuerParametersUID>

 ...

 </abc:IssuerParametersUID>

 <abc:SecretReference>...</abc:SecretReference>?

 <abc:Attribute>

 <abc:AttributeUID>...</abc:AttributeUID>

 <abc:AttributeDescription @Type=”xs:anyURI” @DataType=”xs:anyURI”

@Encoding=”xs:anyURI”>

 <abc:FriendlyAttributeName lang=”xs:language”>

 xs:string

 </abc:FriendlyAttributeName>*

 <abc:AttributeValue>...</abc:AttributeValue>

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

48

 </abc:AttributeDescription>

 </abc:Attribute>*

</abc:CredentialDescription>

/abc:CredentialDescription

This element contains the description of an issued credential.

/abc:CredentialDescription/@RevokedByIssuer

This attribute contains a flag which states the revocation status for the credential.

/abc:CredentialDescription/abc:CredentialUID

This element contains a unique identifier for the credential.

/abc:CredentialDescription/abc:FriendlyCredentialName

This element contains a friendly name for the credential.

/abc:CredentialDescription/abc:FriendlyCredentialName/@lang

This attribute contains the localization for the friendly name of the credential.

/abc:CredentialDescription/abc:ImageReference

This element contains a reference to the credential image location.

/abc:CredentialDescription/abc:CredentialSpecificationUID

This element contains an identifier for the credential specification.

/abc:CredentialDescription/abc:IssuerParametersUID

This element contains a reference to the issuer parameters.

/abc:CredentialDescription/abc:SecretReference

This element contains a local identifier for the secret key which is linked with the credential.

/abc:CredentialDescription/abc:Attribute

This element contains the description of an attribute.

/abc:CredentialDescription/abc:Attribute/AttributeUID

This element contains a local identifier for the attribute.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription

This element contains the description of an attribute.

.../abc:Attribute/abc:AttributeDescription/@Type

This attribute contains a unique identifier for the attribute type.

.../abc:Attribute/abc:AttributeDescription/@DataType

This attribute contains the data type of the attribute.

.../abc:Attribute/abc:AttributeDescription/@Encoding

This attribute specifies the encoding details of the attribute.

/abc:CredentialDescription/abc:Attribute/abc:FriendlyAttributeName

This element contains a friendly name for the attribute.

.../abc:Attribute/abc:FriendlyAttributeName/@lang

This attribute contains a localization for the attribute friendly name.

/abc:CredentialDescription/abc:Attribute/abc:AttributeValue

This element contains the actual attribute value.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

49

FIWARE specifies that the issuance protocol messages must be wrapped by the Application into a

security layer (FIWARE specification mention WS-Trust 1.4 [51]).

The Issuer is responsible for creating the Issuer Parameters and Credential Specifications. FIWARE

specifies that the user must use at least one identity source and at least one attribute source (LDAP

or JDBC compatible databases).

2.2.2.1.4 Token presentation

To provide certified information to a Verifier entity, the user must present a token that contains a

series of attributes or statements regarding her credentials. Beside from revealing information about

user credentials, the token can be used to sign messages, in order to ensure freshness.

The token must support paradigms like: pseudonyms, key binding, inspection and revocation. The

Verifier can cryptographically verify the authenticity of a received presentation token using the

credential specifications and issuer parameters of all credentials involved in the token. The Verifier

must obtain the credential specifications and issuer parameters in a trusted manner, e.g., by using a

traditional PKI to authenticate them or retrieving them from a trusted location. The process of

presentation is triggered when the application on the user's side contacts a verifier to request access

to a resource.

The presentation steps are as follows:

1. Presentation is triggered when user wants to access a protected resource

2. The Verifier responds with one or more presentation policies. It may specify which credentials

from which trusted issuer are required, which attributes must be revealed etc.

3. The user invokes a generic method createPresentationToken(). The token is sent to the

verifier.

4. The verifier calls a generic method verifyTokenAgainstPolicy(). This method verifies

the token statements according to the presentation policy. If the verification succeeds, the

token is stored.

The presentation policy sent by the Verifier has the following schema:

<abc:PresentationPolicyAlternatives Version=”1.0”>

<abc:PresentationPolicy PolicyUID=”xs:anyURI”?>

 <abc:Message>

 <abc:Nonce>...</abc:Nonce>?

 <abc:FriendlyPolicyName lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyName>*

 <abc:FriendlyPolicyDescription lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyDescription>*

 <abc:VerifierIdentity>

 xs:any

 </abc:VerifierIdentity>?

 <abc:ApplicationData>

 ...

 </abc:ApplicationData>?

 </abc:Message>?

<abc:Pseudonym Exclusive=”xs:boolean”? Scope=”xs:string”

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

50

Established=”xs:boolean”? Alias=”xs:anyURI”?SameKeyBindingAs=”xs:anyURI”?>

 <abc:PseudonymValue> </abc:PseudonymValue>?

</abc:Pseudonym>*

<abc:Credential Alias=”xs:anyURI”? SameKeyBindingAs=”xs:anyURI”?>

 <abc:CredentialSpecAlternatives>

 <abc:CredentialSpecUID>...</abc:CredentialSpecUID>+

 </abc:CredentialSpecAlternatives>

 <abc:IssuerAlternatives>

 <abc:IssuerParametersUID RevocationInformationUID=”xs:anyURI”?>

 ...

 </abc:IssuerParametersUID>+

 </abc:IssuerAlternatives>

 <abc:DisclosedAttribute AttributeType=”xs:anyURI”

DataHandlingPolicy=”xs:anyURI”?>

 (<abc:InspectorAlternatives>

 <abc:InspectorPublicKeyUID>

 ...

 </abc:InspectorPublicKeyUID>+

 </abc:InspectorAlternatives>

 <abc:InspectionGrounds>

 ...

 </abc:InspectionGrounds>

)?

 </abc:DisclosedAttribute>*

</abc:Credential>*

<abc:VerifierDrivenRevocation>

 <abc:RevocationParametersUID>...</abc:RevocationParametersUID>

 <abc:AttributeCredentialAlias=”xs:anyURI” AttributeType=”xs:anyURI”>+

</abc:VerifierDrivenRevocation>*

<abc:AttributePredicate Function=”xs:anyURI”>

 (<abc:Attribute CredentialAlias=”xs:anyURI” AttributeType=”xs:anyURI”

DataHandlingPolicy=”xs:anyURI”?/>

 |

 <abc:ConstantValue>...</abc:ConstantValue>

)+

</abc:AttributePredicate>*

</abc:PresentationPolicy>+

</abc:PresentationPolicyAlternatives>

The presentation of one or multiple credentials results in a presentation token that is sent to the

verifier. The syntax for the element is:

<abc:PresentationToken Version=”1.0”>

 <abc:PresentationTokenDescription PolicyUID=”xs:anyURI”

TokenUID=”xs:anyURI”?>

 <abc:Message>

 <abc:Nonce>...</abc:Nonce>?

 <abc:FriendlyPolicyName lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyName>*

 <abc:FriendlyPolicyDescription lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyDescription>*

 <abc:VerifierIdentity>xs:any</abc:VerifierIdentity>

 <abc:ApplicationData>...</abc:ApplicationData>?

 </abc:Message>?

 <abc:Pseudonym Scope=”xs:string”? Exclusive=”xs:boolean”?

Alias=”xs:anyURI”? SameKeyBindingAs=”xs:anyURI”?>

 <abc:PseudonymValue>...</abc:PseudonymValue>

 </abc:Pseudonym>*

 <abc:Credential Alias=”xs:anyURI”? SameKeyBindingAs=”xs:anyURI”?>

 <abc:CredentialSpecUID>...</abc:CredentialSpecUID>

 <abc:IssuerParametersUID>...</abc:IssuerParametersUID>

 <abc:RevocationInformationUID>

 ...

 </abc:RevocationInformationUID>?

 <abc:DisclosedAttribute AttributeType=”xs:anyURI”

DataHandlingPolicy=”xs:anyURI”?>

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

51

 (

 <abc:InspectorPublicKeyUID>...</abc:InspectorPublicKeyUID>

 <abc:InspectionGrounds>...</abc:InspectionGrounds>

)?

 <abc:AttributeValue>...</abc:AttributeValue>

 </abc:DisclosedAttribute>

 </abc:Credential>*

 <abc:VerifierDrivenRevocation>

 <abc:RevocationInformationUID>...</abc:RevocationInformationUID>

 <abc:Attribute AttributeType=”xs:anyURI” CredentialAlias=”

xs:anyURI” >+

 </abc:VerifierDrivenRevocation>*

 <abc:AttributePredicate Function=”xs:anyURI”>

 (<abc:Attribute CredentialAlias=”xs:anyURI”

 AttributeType=”xs:anyURI” DataHandlingPolicy=”xs:anyURI”?/>

 |

 <abc:ConstantValue>...</abc:ConstantValue>

)+

 </abc:AttributePredicate>*

</abc:PresentationTokenDescription>

<abc:CryptoEvidence>

...

</abc:CryptoEvidence>

</abc:PresentationToken>

/abc:PresentationToken

This element contains a presentation token.

/abc:PresentationToken/@Version

This attribute contains the presentation token version.

/abc:PresentationTokenDescription

This element contains the description for the disclosed attributes.

.../abc:PresentationPolicy/@PolicyUID

This attribute contains an identifier for the presentation policy.

.../abc:PresentationPolicy/@TokenUID

This attribute contains a unique identifier for the presentation token.

.../abc:PresentationTokenDescription/abc:Message

This element contains a signed message by private key of each cryptographic token (credential).

.../abc:PresentationTokenDescription/abc:Message/abc:Nonce

This element contains a random number signed by the private key of each token.

.../abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyName

This element contains a friendly name for the description.

.../abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyName/@lang

This attribute specifies the localization for the friendly name policy.

.../abc:PresentationTokenDescription/abc:Message/abc:VerifierIdentity

This element contains the identity of the verifier.

.../abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyDescription

This element contains a friendly description for the policy.

.../abc:Message/abc:FriendlyPolicyDescription/@lang

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

52

This attribute contains a localization for the friendly description of the policy.

.../abc:PresentationTokenDescription/abc:Message/abc:ApplicationData

This element contains the data type of the string.

.../abc:PresentationTokenDescription/abc:Pseudonym

This element indicates that a pseudonym is present along with the presentation token.

.../abc:PresentationTokenDescription/abc:Pseudonym/@Scope

This attribute contains the scope of the pseudonym.

.../abc:PresentationTokenDescription/abc:Pseudonym/@Exclusive

This attribute indicates that the pseudonym is scope-exclusive.

.../abc:PresentationTokenDescription/abc:Pseudonym/@Alias

This attribute contains an alias for the pseudonym.

.../abc:PresentationTokenDescription/abc:Pseudonym/@SameKeyBindingAs

This attribute contains an alias to another pseudonym or to a Credential element for a credential key

binding.

.../abc:PresentationTokenDescription/abc:Pseudonym/abc:PseudonymValue

This element contains the base64 encoding of the pseudonym.

.../abc:PresentationTokenDescription/abc:Credential

This element contains the presentation token credential.

.../abc:PresentationTokenDescription/abc:Credential/@Alias

This attribute contains an alias for the credential.

.../abc:PresentationTokenDescription/abc:Credential/@SameKeyBindingAs

This attribute contains an alias for a pseudonym or a reference to another Credential element for

credential with key binding.

.../abc:Credential/abc:CredentialSpecUID

This element contains an identifier for the credential.

.../abc:PresentationTokenDescriptionabc:Credential/abc:IssuerParametersUID

This element contains an identifier for the credential public key.

.../abc:PresentationTokenDescriptionabc:Credential/abc:RevocationInformationUID

This element contains an identifier for the revocation information.

.../abc:PresentationTokenDescription/abc:Credential/abc:Attributes

This element contains the disclosed attributes.

.../abc:PresentationTokenDescription/abc:Credential/abc:DisclosedAttribute

This element contains one disclosed attribute.

.../abc:Credential/abc:DisclosedAttribute/@AttributeType

This element describes the credential type of the disclosed attribute.

.../abc:Credential/abc:DisclosedAttribute/@DataHandlingPolicy

This attribute contains an external data handler policy.

.../abc:Credential/abc:DisclosedAttribute/abc:InspectorPublicKeyUID

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

53

This optional element contains the identifier of the inspector public key under which the attribute

value is encrypted

.../abc:Credential/abc:DisclosedAttribute/abc:InspectionGrounds

This element contains the context under which the inspector can decrypt the attributes.

.../abc:Credential/abc:DisclosedAttribute/abc:AttributeValue

This element contains the base64 encoding of the disclosed attribute.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation

The element describes the parameters used in the validity verification of an attribute.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:RevocationInf

ormationUID

This element contains an identifier for the verification information.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribute

This element specifies a credential attribute that is used for verifier-driven revocation

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribute/@Cr

edentialAlias

This attribute describes an alias for the credential from which the attribute was used.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribute/@At

tributeType

This attribute refers to the attribute used for verifier-driven information.

.../abc:PresentationTokenDescription/abc:AttributePredicate

This optional element specifies a predicate that is guaranteed to hold by this token.

.../abc:AttributePredicate/@Function

This attribute specifies the boolean function for this predicate.

.../abc:AttributePredicate/abc:Attribute

This element contains a reference to the attribute used in the predicate evaluation.

.../abc:AttributePredicate/abc:Attribute/@CredentialAlias

This attribute contains an alias for the credential which contains the attribute.

.../abc:AttributePredicate/abc:Attribute/@AttributeType

This attribute contains the exact attribute used as a predicate argument.

.../abc:AttributePredicate/abc:Attribute/@DataHandlingPolicy

This attribute contains an external data handling policy used in predicate evaluation.

.../abc:AttributePredicate/abc:ConstantValue

This element specifies a constant value used for the predicate.

/abc:PresentationToken/abc:CryptoEvidence

This element contains the cryptographic elements for the presentation token.

2.2.2.1.5 Identity Selection

The Identity Selection steps are executed between the user and the identity selection component.

These allow the user to choose among different combination of credentials and/or pseudonyms in

order to satisfy a presentation or an issuance policy. The identity selection component can be

considered as user interface (UI), for instance a graphic interface. More details can be found in the

FIWARE specification [48].

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

54

2.2.2.2 IRMA (I Reveal My Attributes)

The IRMA (I Reveal My Attributes) project [9], aims at providing an open, secure, decentralized and

easy to use implementation of Privacy-Preserving Attribute-Based Access Control with minimal

disclosure of attributes for online and offline transactions.

Figure 7 "Using IRMA is easy" - from the IRMA Project [9]

From the point of view of the user, she installs the IRMA mobile app, which acts as an Attribute-Based

Credential wallet. Then, with her desktop or laptop, she goes to the website of an issuer, authenticates

with it and requests the issuance of a credential. The website shows a QR code and the user scans it

with the IRMA app. The issued credential is transferred to the user device and, if the user confirms the

transaction, stored in the wallet.

Then, when the user visits a website and requests access to a protected resource (e.g. a video on

IRMATube [10]), the website shows a QR code. When the user scans the QR code with the IRMA app,

she is prompted with the attributes that will be disclosed to the website and asked for confirmation.

If the user confirms, the website presents to the user the protected resource. The simplified data flow

for the IRMA verification process is depicted in Figure 8.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

55

Figure 8 IRMA data flow (verification)

For ReCRED, the open source Idemix implementation targeted at mobile devices of IRMA is particularly

relevant: its ease of use and its device-centric and user-centric approach are well aligned with the

objectives of ReCRED. Thus, we are currently using it as the underlying Idemix crypto engine for the

ReCRED ABAC components, and is the basis of the ReCRED Wallet application, described in Section

3.1.1.2.2.

2.2.2.2.1 IRMA Architecture

We here provide a description of the architecture of the IRMA Idemix implementation targeted at

mobile devices. The main components, the User Device, the IRMA API Server and the Application

Server are depicted in Figure 9 and described below. Please note that with respect to Figure 8 the

Service Provider side is split into two components: the IRMA API Server, which performs the

cryptographic Idemix operations, and the Application Server, which runs the actual application logic.

Figure 9 IRMA for Mobile Devices Architecture

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

56

 IRMA API Server: this is a server that sits between the user device and service or identity

providers on the other hand. It handles all specific cryptographic details of issuing credentials

and verifying disclosure proofs on behalf of the service or identity provider.

 Application Server: this is the service or identity provider server implementing the interface

between the user and the IRMA API Server (cryptographic API).

 User Device: this is the user device used to access services using IRMA application and

enforcing ABAC by means of Idemix credentials.

 The design of the IRMA architecture allows to have a cryptographic implementation clearly separated

with respect to the service/identity-provider specific application level.

2.2.2.2.2 IRMA Issuance

The diagram in Figure 10 summarizes the issuance process in the IRMA implementation targeted at

mobile devices. When the user requests a credential to an Identity Provider, the Application Server

requests the IRMA API Server to generate a session token. This session token is passed to the User

Device through e.g. a QR code. The User Device uses this session token to contact the IRMA API Server

and retrieve the attributes that will be included in the issued credential. If the End User gives her

consent, the requested Idemix credential is issued to the User Device and the Identity Provider is

notified.

Figure 10 IRMA Issuance sequence diagram

2.2.2.2.3 IRMA Verification

The diagram in Figure 11 depicts the verification process in the IRMA implementation targeted at

mobile devices. When the user requests a resource to a service provider, the Application Server

requests the IRMA API Server to generate a session token. This session token is passed to the User

Device through e.g. a QR code. The User Device uses this session token to contact the IRMA API Server

and retrieve the list of attributes which are required to access the resource. If the End User consents

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

57

to the disclosure of the required attributes, the User Device proves to the IRMA API Server the

possession of the required attributes. Alternatively, the User can prove only the possession of a

specific credential (without revealing the included attributes). The IRMA API Server verifies the validity

of the received proofs and sends the required attributes to the Application Server. The Application

Server then sends the requested resource to the user.

Figure 11 IRMA Verification Sequence Diagram

2.2.2.3 Consent Management Design

Consent Management consists of the following sub-modules:

 The Consent Management front-ends, which provide a UI so that the ReCRED users and

Identity Providers can view and manage their consent policies.

 REST APIs that provide CRUD functionality, as well as consent policy enforcement.

 The Consent Management data store, for persistently storing the consent policies of the

ReCRED users and the Identity Providers.

The following diagram (Figure 12) depicts the main sub-modules of the Consent Management Module

and their relations among them and with other ReCRED modules.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

58

Figure 12: Consent Management Design

Two front-ends are provided, through which the ReCRED users and the Identity Providers can manage

their consent policies. The Consent Management Web Front-end is accessible through all the major

web browsers, and it allows authorized end-users and Identity Providers to create new consent

policies, see the policies that they have created and edit or delete them. The ReCRED users can create

policies, according to which specific identity attributes will be hidden to specific Identity and/or

Service Providers. The Identity Providers can additionally create policies, according to which the

issuance of cryptographic credentials (Idemix / U-Prove) will be forbidden for specific attributes. The

Consent Management Mobile Front-end is an Android app, which provides the same functionality but

only for the ReCRED end-users.

The Consent Management API exposes all the required CRUD operations for managing the consent

policies. HTTP POST is used, in order to create and save new policies to the data store, HTTP GET is

used to retrieve the user’s policies, and HTTP PUT and DELETE are used in order to update and delete

consent policies respectively.

The Policy Enforcement Engine (PEE) also uses REST calls, in order to expose operations for the

enforcement of the consent policies of the ReCRED users and the Identity Providers. This API is used

by other ReCRED modules, which need to abide by these policies. More specifically:

 The Identity Management Module calls the PEE each time a user attempts to transfer an identity

attribute between two IdPs (A -> B). In that case, the PEE ensures that there are no policies,

defined either by this user or by the source IdP (A), according to which the specific identity

attribute should not be revealed to the target IdP (B). If there are such policies, the PEE blocks the

attribute transfer, otherwise the transfer is approved.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

59

 The Credential Management Module calls the PEE each time it attempts to issue an idemix / u-

prove credential to the user’s device, including specific identity attributes. In that case, the PEE

ensures that there are no policies defined by the IdP, forbidding one or more of these attributes

to be proven using Idemix / U-Prove. If there are such policies, the PEE blocks the credential

issuance, otherwise the issuance is approved.

 The OpenAM module calls the PEE each time it attempts to reveal a user’s identity attribute to a

Service Provider. In that case, the PEE ensures that there are no policies, defined either by this

user or by the IdP holding the attribute value, according to which the specific identity attribute

should not be revealed to the specific Service Provider. If there are such policies, the PEE blocks

the attribute reveal, otherwise the reveal is approved.

Finally, the Consent Policies Data Store sits at the bottom of the architecture and stores all the

consent policies created by the ReCRED users and the Identity Providers.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

60

3 P-ABAC Module Implementation and Mapping to P-ABAC

components
This section reports on the implementation of the modules that support the ReCRED P-ABAC

infrastructure. After the description of the implementation of the modules, we map them to the

ReCRED ABAC components presented in Section 2.1.1.

3.1 P-ABAC Components Implementation

3.1.1 Credential Management Daemon

One of the most important features provided by the ReCRED framework is the implementation of a

user-friendly Attribute Based Access Control (ABAC) architecture, integrated in the system, allowing

the user to preserve the privacy of its attributes.

The Credential Management Daemon is designed to “translate” identity attributes acquired by

Identity Providers to valid credentials for the Privacy-Preserving ABAC (P-ABAC) cryptographic

technologies adopted by ReCRED (i.e. Idemix, U-Prove, ABE).

The Credential Management Module of the ReCRED Identity Consolidator is a special instance of the

Credential Management Daemon: it is in charge of issuing credentials to the user, compiling the

credential attribute values from verified identity attributes stored by the Identity Consolidator. These

values are retrieved by the Credential Management Module by using the Storage Module API.

3.1.1.1 P-ABAC API Server

The ReCRED P-ABAC API Server is the server demanded to run the cryptographic functionalities for

Idemix and U-prove. The following sections provide an overview of the issuance protocol performed

when issuing Idemix and U-prove credentials.

3.1.1.1.1 Idemix API Server

The issuing protocol is triggered when a user requires the issuance of Idemix credentials from an

Identity Provider.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

61

Figure 13. IRMA Issuance Protocol

The issuance protocol’s phases reported in Figure 13 are the following:

1. The Application Server submits the issuance request (triggered by the user) to the IRMA API

Server;

2. The IRMA API Server provides to the Application Server a session token to be provided to the

User Device together with the end-point that the user should contact to require the

credential;

3. The User Device accesses the end-point provided by the Application Server by using the

session token;

4. The User Device receives the Idemix credential issued by the IRMA API Server.

At the end of the protocol the User Device stores the received credential in a secure storage on the

device. Note that, also in this case, the Application Server is not required to run any cryptographic

operations.

3.1.1.1.2 U-Prove API Server

The U-Prove API service contains a U-Prove engine which performs all the cryptographic operations

during the issuance protocol. For the communication between client and server the U-Prove objects

are serialized using the JSON format. The following image illustrates how the data is being sent over

the network from the client to the server.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

62

Figure 14. U-Prove client-server architecture

The output of the issuance process is a U-Prove token containing the following information:

1. An application-specific unique identifier for the Issuer parameters under which this token was

issued;

2. the Token Information field is used to encode token-specific information which is always

disclosed to Verifiers, such as token usage restrictions, a validity period, or any other

metadata. If this information is significant then the implementation should provide the

particular implementation for the decoding process in the verification process;

3. the Prover Information field is used to encode token-specific information which is always

disclosed to Verifiers, such as token usage restrictions, a validity period, or any other

metadata. This information is also disclosed to the Verifier;

4. The signature provided by the Issuer.

For keeping track of all the U-Prove clients that are accessing the U-Prove server, the API generates a

session key for each client that tries to obtain a U-Prove credential. When a user tries to generate

multiple U-Prove credentials (tokens) all the following is being verified:

 the U-Prove session key which the user presents exists in the database and the session

key that the user provided is not expired;

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

63

 the U-Prove client together with the valid session key previously validated makes a valid

request to the U-Prove server. This aspect must be checked because the issuance process

in U-Prove takes more than one step;

 the identity of the issuer doesn’t exist in different states at the same time during the

issuance process. More exactly the same issuer should not generate a U-Prove credential

for more than one user at the same time;

 the number of credentials the user wants to obtain is smaller than the maximum number

of credentials the server can provider at once.

3.1.1.2 Credential Management Application

One of the aims of ReCRED is to support an Attribute Based Access Control Infrastructure that enables

the use of anonymous credentials, based on technology at the state of the art such as Idemix and U-

Prove. These technologies provide the core cryptographic functionalities of the P-ABAC architecture

but have different requirements for what concerns their interfaces. The FIWARE project provides a

common interface between Idemix and U-Prove by means of the Privacy Generic Enabler [4]. In the

ReCRED ABAC architecture we aim at joining together the ReCRED results with the outputs from the

IRMA and FIWARE projects to provide an integrated P-ABAC architecture, providing both Idemix and

U-Prove credentials support.

The Credential Management (CM) module aims at supporting the issuance of anonymous, P-ABAC

credentials derived from the information acquired by the Identity Consolidator. The P-ABAC

credentials are issued to the User Device and received and stored by the ReCRED Wallet app.

Figure 15. Credential Management module submodules and interactions

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

64

As shown in figure 12, the Credential Management Module is composed by two main sub-components

reflecting the Issuer component structure:

 ReCRED API Server

 Credential Management Module Application

3.1.1.2.1 Credential Management Module Application Frontend

The Credential Management Module frontend is a web application that can be used by the user to list

the credentials that can be issued to her by the Identity Consolidator. The application is linked to the

Storage API, in order to be able to retrieve identity attributes to be used in the credential generation,

and to the ReCRED API Server, for the actual credentials issuance.

We provide below a list of operations which can be performed by the user on the Credential

Management Module frontend.

3.1.1.2.1.1 List Compiled Credentials

Once the user logs into the CM Module Application Frontend, the application retrieves through the

Storage API all attribute values that match the fields of a set of pre-defined credentials. These attribute

values are used to fill the fields of these credential structures, i.e. to compile the credentials to be

issued. These credentials are listed to the user as shown in Figure 16. For each credential the following

information is presented:

 Credential Name: is the name of the credential represented in the following dotted format:

o <Domain>.<Issuer>.<CredentialName> where:

 Domain: is the application domain, which in the ReCRED project case will be

recred;

 Issuer: is the issuer name, which in the case of the CM Module is

RecredIdentityConsolidator, since the issuer is the Identity Consolidator;

 CredentialName: is the name that identifies the credential (e.g. usernames,

userphone)

 List of attributes: is the list of attributes defined in the credential structure and for which the

value has been retrieved through the Storage API.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

65

Figure 16. List of available credential ready to be issued

3.1.1.2.1.2 Issue Credentials

From the credentials list, the user is able to select the credential that wants to be issued to her own

device. Once it selects the “Issue” button for a specific credential, the CM Module Application contacts

the ReCRED API Server to obtain a session token for the issuance of the selected credential. Once the

Credential Management Module application receives the session token from the API Server, it

provides to the user a QR Code, as shown in Figure 17 that contains a JSON text with the following

information:

 Session Token, e.g., eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9

 URL of the API Server: e.g., https://api.recred.eu/abac

 Protocol Version: e.g., v1

Figure 17. Credential Issuing: Link of the User Device to the API server by means of QR Code

The QR code enables the user to receive the information about the opened session with the API Server

in order to execute the Issuance protocol directly with the API Server itself.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

66

3.1.1.2.2 Wallet Application

The ReCRED Wallet Application is designed both to manage P-ABAC credentials and support the user

in the Issuance and Verification phases. Indeed, the user is able to receive the credentials directly to

the user device thanks to such application. Moreover, all the issued credentials will be available to the

user through the Wallet Application. By using the ReCRED Wallet Application, shown in Figure 18, the

user can scan the QR code and receive such information.

Figure 18. ReCRED Wallet Application

At this point the ReCRED Wallet Application and the API Server will run the Issuance Protocol in order

to perform the issuance of the previously selected credential. As shown in Figure 19, the user will be

asked to provide consent to receive the credential and the attributes, together with the value of each

attribute, displayed to the user by means of a dialog. The user can deny consent, and the issuance of

the credential will be stopped. Otherwise the credential will be issued to the user and will be stored

in the user device itself.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

67

Figure 19. ReCRED Wallet Application: issuance consent display

Once the issuance of the credential is completed, it is added to the list of credentials owned by the

user and issued to her device (Figure 20).

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

68

Figure 20. ReCRED Wallet application: Credential list and details

3.1.1.3 Integration of the Credential Management in the Identity Consolidator

The Credential Management Daemon has been integrated in the ReCRED Identity Consolidator. To

this aim a docker-compose file and a set of Docker files have been produced, corresponding to the

Credential Management Frontend, the Credential Management backend, the API Server configuration

and the actual API crypto Server.

3.1.2 U-Prove Implementation

The implementation of U-Prove was written completely in the Java language in order to provide

interoperability. The code is focused around two major components:

 a U-Prove engine which is responsible for all the cryptographic operations and implements

the U-Prove protocol specifications;

 a U-Prove REST API used primarily for integration with the other components from ReCRED.

These components are described in detail in the remainder of this section.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

69

3.1.1.1 U-Prove engine implementation

The U-Prove engine implementation focuses primarily on the three entities that interact during the U-

Prove protocol: the Prover (the user), the Issuer and the Verifier. The class diagram, presented below,

includes also other entities which fulfill the whole protocol.

Figure 21 The class diagram for the U-Prove engine

3.1.2.1.1 U-Prove entities

1. The Issuer entity: Is the most complex entity from the U-Prove architecture and is responsible for

generating the system parameters, the issuer parameters (based on the user request) and for

creating two messages during the issuance protocol. In order to start the issuance protocol, the

user sends to the issuer the specification of the token. In the generation of the issuer parameters

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

70

a number of variables have default values. These variable can be configured in order to customize

the U-Prove algorithm. The table below shows which parameters should be provided by the user

and which have the default values.

Parameter Name Parameter Default Value Mandatory

Number of Tokens - yes
yes

Group Construction Subgroup no

IssuerParameterUid -

HashAlgorithm - yes

GroupName SubgroupParameterSets.ParamSet_SG_
2048256_V1Name

no

Token Information - yes

Prover Information - yes

Specification null no
 Table 1 U-Prove parameters used during the issuance protocol

 The code below illustrates the process of validating and generating the issuer parameters:

 public IssuerKeyAndParameters generate(boolean supportDevice) throws
NoSuchProviderException,

 NoSuchAlgorithmException, InvalidUProveArtifactException {

 validate();

 GroupElement[] gValues = null;

 if (issuerParameters.getGq() == null) {

 if(this.parameterSet != null){

 issuerParameters.setGq(this.parameterSet.getGroup());

 gValues = this.parameterSet.getG();

 if (supportDevice){

 issuerParameters.setGd(this.parameterSet.getGd());

 }

 ip.UsesRecommendedParameters =

ParameterSet.ContainsParameterSet(this.ParameterSet.Name);

 }

 else

 {

 ParameterSet defaultParamSet =

IssuerSetupParameters.getDefaultParameterSet(this.groupConstruction);

 issuerParameters.setGq(defaultParamSet.group);

 if (useRecommendedParameterSet){

 gValues = defaultParamSet.generatorsGroup;

 issuerParameters.setGd(defaultParamSet.getGd());

 issuerParameters.setUseRecommendedParameterSet(true);

 }

 }

 }

 FieldZqElement y0 = ProtocolHelper.generateIssuerParametersCryptoData(issuerParameters,

gValues, supportDevice);

 return new IssuerKeyAndParameters(issuerParameters,y0)

 }

The three main methods from this entity are:

 precomputation(GroupElement gamma, FieldZqElement[] pregenaretdValues) - which

performs the precomputation phase from the issuance protocol. The user may send to the

user precomputed values for increasing the speed of the protocol;

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

71

 generateFirstMessage() - this method generates the first message object based on the

information provided by the user in the previous phase. The engine also verifies that the

issuance protocol is in the right phase before retrieving the message for the user;

 generateThirdMessage(SecondIssuanceMessageComposite secondMessage) - this is the third

message which the user generates based on the given parameters. After this step, the issuer

deletes the random elements generated during the previous phases.

This entity has a State parameter which maintains the state of the issuance protocol. If the Issuer gets

a request to generate a U-Prove message, the state parameter is checked in order to validate the

integrity of the issuance protocol.

 2. The Prover entity: The functionality that this entity offers is similar to the Issuer. The main

methods presented in this class are:

 precomputation(GroupElement gamma,FieldZqElement[] pregenaretdValues) - very similar to

the function with the same name from the issuer side. It also precomputes some data to

increase the speed of the issuance protocol;

 generateSecondMessage(FirstIssuanceMessageComposite) - this method generates the

second message from the issuance protocol based on the first message received from the

issuer;

 generateTokens (ThirdIssuanceMessageComposite) - generates an array of

UProveKeyAndToken objects based on the third message received from issuer. The number of

tokens to be generated is sent to the issuer by the user in a previous phase.

 3. The Verifier entity: In our implementation the verification part is presented in the

PresentationProof class. This class performs at first the generation of the proof on the Prover side,

using the method generate. The presentation proof is then sent to the verifier which uses this proof

in the verification process by calling the verify method. The generation of the proof, as mentioned in

the protocol, may involve an additional device. The code below is a simplified version of the verify

method which is the main method through which the integrity of the token is verified.

protected void verify(IssuerParameters issuerParameters,int[] disclosed,int[] committed,int

pseudonymAttribIndex,GroupElement gs, byte[] message, byte[] messageD,UProveToken uproveToken)

throws NoSuchAlgorithmException, NoSuchProviderException, IOException,

InvalidUProveArtifactException

 {

 if (disclosed == null){

 disclosed = new int[] { };

 }

 Arrays.sort (disclosed);

 Group Gq = issuerParameters.getGq ();

 int n = issuerParameters.getEncodingBytes().length;

 boolean presentPseudonym = false;

 boolean verifyCommitments = (committed != null && committed.length > 0);

 if (verifyCommitments){

 Arrays.sort(committed);

 }

 ProtocolHelper.isTokenSignatureValid(issuerParameters, uproveToken);

 int dArraySize = disclosed.length + 2;

 GroupElement[] dBases = new GroupElement[dArraySize];

 FieldZqElement[] dExponents = new FieldZqElement[dArraySize];

 dBases[0] = issuerParameters.getG()[0]; dExponents[0] =

issuerParameters.getZq().getOne(); // g0^1

 dBases[1] = issuerParameters.getG()[n + 1];

 dExponents[1] = ProtocolHelper.computeXt(issuerParameters,

uproveToken.getTokenInformation(), uproveToken.isDeviceProtected()); // gt^xt

 FieldZqElement[] disclosedX = new FieldZqElement[disclosedAttributes.length];

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

72

 int aPreImageArraySize = 2 + (n - disclosed.length) +

(uproveToken.isDeviceProtected() ? 1 : 0);

 GroupElement[] aPreImageBases = new GroupElement[aPreImageArraySize];

 FieldZqElement[] aPreImageExponents = new FieldZqElement[aPreImageArraySize];

 aPreImageBases[1] = uproveToken.getH(); aPreImageExponents[1] = this.r[0]; // h^r0

 int dIndex = 0;int uIndex = 1;int cIndex = 0;int pseudonymResponseIndex = 0;

 int[] commitmentResponseIndices = verifyCommitments ? new int[committed.length] :

null;

 for (int i = 1; i <= n; i++){

 if (UProveUtil.contains(disclosed,i){

 disclosedX[dIndex] = ProtocolHelper.computeXi(issuerParameters, i -

1,disclosedAttributes[dIndex]);

 dBases[dIndex + 2] = issuerParameters.getG()[i];

 dExponents[dIndex + 2] = disclosedX[dIndex];

 dIndex++;

 }

 else{

 aPreImageBases[uIndex + 1] = issuerParameters.getG()[i];

 aPreImageExponents[uIndex + 1] = this.r[uIndex]; // gi^ri

 if (presentPseudonym){

 if (pseudonymAttribIndex == i) {

 pseudonymResponseIndex = uIndex;

 }

 }

 if (verifyCommitments){

 if (UProveUtil.contains(committed,i)){

 commitmentResponseIndices[cIndex] = uIndex;

 cIndex++;

 }

 }

 uIndex++;

 }

 }

 GenChallengeReturnType genChallengeReturnType =

ProtocolHelper.genChallenge(issuerParameters, uproveToken, this.a, pseudonymAttribIndex,

 this.ap, this.ps, message, messageD, disclosed, disclosedX,

 committed, this.commitments);

 FieldZqElement c = genChallengeReturnType.challenge;

 aPreImageBases[0] = Gq.multiExponentiate(dBases, dExponents);

 aPreImageExponents[0] = c.negate(); // g0.gt^xt.Product[gi^xi]_(for disclosed i)

 HashFunction hash = issuerParameters.getHashFunction();

 hash.update(Gq.multiExponentiate(aPreImageBases, aPreImageExponents));

 byte[] test = hash.getByteDigest();

 if (!UProveUtil.sequenceEqual(this.a,test)){

 throw new InvalidUProveArtifactException("Invalid presentation proof");

 }

 }

3.1.2.1.2 U-Prove protocol flow

During the protocol, it is assumed that the attributes are known to both the Prover and the Issuer and

the latter should not verify the validity of the data. In the diagram below the flow of the application

during the issuance protocol is described taking into account the previous considerations. The

verification process is very straight-forward and thus is not described here through a sequence

diagram.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

73

Figure 22 The issuance protocol from U-Prove

3.1.2.1.3 U-Prove additional considerations

In order to test the whole protocol, we used the official test vectors from Microsoft and created unit

tests which validate the correctness of the implementation.

As mentioned before, the implementation supports all the specifications provided by the Microsoft

documentation. Some features provided by this implementation are:

 the U-Prove token may be protected by an additional device;

 a wide range of security level values (from 80 to 256) are allowed;

 both the ECC and Subgroup constructions are supported.

3.1.2.2 U-Prove Web Server

In order to be integrated into the ReCRED architecture, over the engine's implementation of U-Prove

we have developed a service API which accepts and produces JSON data. This web service includes

two main subservices: UProveIssuerService and UproveVerifierService.

In order to create the U-Prove REST API we use the Java programming language and the Jersey library

for building the web server. In order to manage the dependencies more properly and deploy the war

archive more easily, we use Maven.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

74

3.1.1.1.1 U-Prove Issuer Service

The main aim of this subservice is to implement the issuance process, which provides the U-Prove

token. The most important methods which the service offers are listed in the table below.

Name Method Description Error Codes

handshake GET Used only once at the
beginning of the
issuance protocol. This
method produces a
uniquely random string
which will be used for
requesting other U-
Prove messages.

MAX_ACTIVE_SESSIONS_MESSAGE - if the
maximum number of concurrent
sessions has been reached;
INVALID_SESSION_EXCEPTION_MESSAGE –

if the process of adding a new session
failed. This thing may happen if the
newly generated value for the session
already exists in the memory of the
service.

createIssuerSetup
Parameters

POST Generates a new fresh
set of issuer parameters
based on the given
specification provided
by the user. The
specification must be
serialized in JSON format
and the request contains
also the sessions id
previously generated.

INVALID_SESSION_EXCEPTION_MESSAGE –
if the sessionId value was not found in
memory or expired since was
generated;

JSON_SERIALIZATION_EXCEPTION_MESSA

GE – if some error occurs during the
serialization process;
HASH_EXCEPTION_MESSAGE – if an error
occurs during the hash operations.
These errors may occur if the specified
hash algorithm was not found or if the
PROTOCOL_EXCEPTION_MESSAGE – if
other U-Prove exception occurs during
the method call.

generateFirstMess
age

GET Performs the first step of
the issuer during the
issuance protocol. The
user must provide
additional details in
order to start the
issuance protocol
(number of tokens to
generate, token
information field value
etc.). The session id
value is required in this
step also.

INVALID_SESSION_EXCEPTION_MESSAGE –
if the sessionId value was not found in
memory or expired since was
generated;

JSON_SERIALIZATION_EXCEPTION_MESSA

GE – if some error occurs during the
serialization process;
PROTOCOL_EXCEPTION_MESSAGE – if
other U-Prove exception occurs during
the method call. The most frequent
error that maps to the exception
message is the invalid state error raised
by the engine during the
getFirstMessage method from the U-
Prove engine.

generateThirdMe
ssage

POST Generates the third
message of the U-Prove
protocol. The input of
this method is a
serialized version of the
second U-Prove message
generated by the prover.

INVALID_SESSION_EXCEPTION_MESSAGE –
if the sessionId value was not found in
memory or expired since was
generated;

JSON_SERIALIZATION_EXCEPTION_MESSA

GE – if some error occurs during the
serialization process;

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

75

PROTOCOL_EXCEPTION_MESSAGE – if
other U-Prove exception occurs during
the method call. The most frequent
error that maps to the exception
message is the invalid state error raised
by the engine during the
getFirstMessage method from the U-
Prove engine.

Table 2 – U-Prove REST API

3.1.1.1.2 U-Prove Verifier Service

Contains only one method which performs the verification of the U-Prove token. This method is

described below.

 verifyToken – Performs the verification step from the U-Prove protocol. The user must send

to the server the presentation proof as well as the token and the attribute he wants to

disclose. Beside the disclosed parameters, the user may send to the verifier the committed

attributes, if any. This step doesn’t require the session id parameter. It may return similar

error codes in case of failure. If the verification process succeeded, the Success message is

returned.

3.1.3 Trusted Execution Environment

GlobalPlatform’s Trusted Execution Environment (TEE) offers safe execution of authorized security

software, known as “Trusted Applications”, enabling it to provide end-to-end security by enforcing

protected execution of authenticated code, confidentiality, authenticity, privacy, system integrity and

data access rights. Hence, TEE in the context of ReCRED will provide a secure platform for storing and

handling sensitive user information on her mobile device. TEE defines a distinction between Normal

World, where common OS and applications are executed, and Secure World, which hosts Trusted OS

and applications. In ReCRED, only a subset of the user’s operations will be executed inside Secure

World (such as storing secret keys in TEE Trusted Storage), while the rest of the operations will remain

in the Normal World. The communication between Normal World and Secure World will be achieved

by utilizing the TEE Client API, defined in GlobalPlatform specification.

Idemix is a protocol which will be implemented in ReCRED, that allows user authentication without

divulging any personal data. In Idemix, the User identity stores sensitive user information which

typically requires interaction with the Issuer identity. This interaction (also known as Issue protocol),

in its simplest form, involves two rounds: (a) the User submits a request containing her attributes and

(b) the Issuer certificates the fact that the User has the claimed attributes by returning a credential.

More generally, the credentials can be generated through a multi-round interaction between the two

identities. These credentials can be later used by the user to convince a Verifier identity that she has

a certain set of attributes. Critical operations of the User identity should benefit by the leveraged

security provided in TEE, thus offering a greater level of security to the end user.

Each User in Idemix, is required to generate a random secret key, which should not be made publicly

available. The key should be stored safely in user’s device for later use. Moreover, the credentials

issued to a User, should also be safely stored in her device, to be used during the verification process.

To this end, TEE’s Trusted Storage will provide to ReCRED a safe storage place to store User’s secret

key and issued credentials.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

76

User’s secret key constitutes crucial information in terms of security, and should not be made available

to Normal World applications. Thus, cryptographic operations that require knowledge of the User’s

secret key, cannot be executed in Normal World. Trusted Applications designed to run inside TEE will

be implemented in ReCRED, to calculate specific values (such as U and sHat) required during the

execution of the Issue Protocol. An example of the Idemix issuing protocol workflow implemented

inside the TEE by means of OpenTEE is depicted in Figure 23.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

77

Figure 23: Idemix Issue protocol workflow implemented in TEE by means of OpenTEE

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

78

3.1.4 Consent Management

3.1.4.1 Consent Management Back-end

The consent management backend in Figure 24 is a API enabled module that contains standard

functionalities for creating policies & consent. The main components are:

 Consent management API: the consent management API allows for the administration of

policies. Users and identity providers can create, read, update and remove policies using this

component. The consent management API is able to handle all specifics of consent

management.

 The policy enforcement engine basically allows clients to use on functionality: to get a

decision whether information can or cannot be disclosed.

 A centralized consent policy data store is used to store all types of policies

 An authorization layer is put in place on top of all APIs. Each of the endpoints of the consent

management module is protected using OAuth2. As all policies are stored inside one database,

it must be made sure that users and identity providers can only manage their own policies.

To do this, for each request, the authorization layer will verify whether an access token is

available. Using this access token, the authorization layer is able to fetch the identity of the

user. The authorization layer then inspects the contents of the request to make sure the rule

belongs to the particular person or whether it is allowed the specific decision is requested.

Consent policy data store

Consent management API Policy enforcement engine

Policy API’s (CRUD) Decision requests

Authorization layer

Figure 24 Consent Management Back-end architecture

3.1.4.2 Consent Management Mobile Application

The Consent Management mobile front-end has been implemented as an Android mobile application

that allows the users to define their consent for their various identity attributes by defining policies

regarding the Identity Providers and Service Providers to which their attributes should be revealed.

These consent policies are then enforced, every time the user wishes to prove an identity attribute to

a verifier.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

79

The mobile app communicates with the Consent Management back-end, allowing the end-users to

access the following functionality:

 Create new consent policies, by hiding specific identity attributes (or groups of attributes)

from Identity Providers and/or Service Providers

 View the consent policies that he has created, and group them by attribute, Identity Provider

or Service Provider

 Modify or delete consent policies that he has already created

3.1.4.2.1 Create new Consent Policy

The user can create new consent policies through a two-step procedure: the user defines the

attribute(s) that he wants to hide and then he defines the Identity Provider(s) or Service Provider(s)

from whom he wants to hide these specific attributes (Figure 25). Hiding an attribute from an Identity

Provider means that this attribute cannot be transferred to that Identity Provider (or revealed to it, in

cases where the Identity Provider might act as a Service Provider). Hiding an attribute from a Service

Provider means that this attribute cannot be transferred to that Service Provider.

Figure 25 Create new consent policy page

More specifically, at first the user must select the attributes that he wants to hide. There two options

here:

1. The user can select to hide a specific identity attribute, which he can select from a drop-down

list (Figure 26).

2. The user can select to hide all his identity attributes that are below a certain Level of Assurance

(LoA), which he can also select from a drop-down list (Figure 27)

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

80

Figure 26 Selection of specific identity attribute

Figure 27. Selection of identity attributes below a certain LoA

After that, the user must select the Identity Providers or Service Providers from whom the selected

attribute(s) will be hidden. Here, there are four possible options:

1. The user can select a specific Identity Provider (Figure 28)

2. The user can select all the Identity Providers below a certain LoA (Figure 29)

3. The user can select a specific Service Provider (Figure 30)

4. The user can select all the Service Providers below a certain LoA (Figure 31)

Figure 28. Selection of specific Identity Provider

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

81

Figure 29. Selection of Identity Providers below a certain LoA

Figure 30. Selection of specific Service Provider

Figure 31. Selection of Service Providers below a certain LoA

3.1.4.2.2 View created consent policies

The user can see a list with all the consent policies that she has created. These attributes are grouped

under three different sections:

3.1.4.2.2.1 View created consent policies by an Identity attribute

Here, the user can see a list with all his identity attributes and how many consent policies he has

created for each attribute (Figure 32). After selecting a specific attribute, the user can see all the

consent policies that he has created for it (Figure 33), either explicitly for that attribute or for an LoA

where the attribute is included.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

82

Figure 32. List of a user's identity attributes

Figure 33. View created policies per identity attribute

3.1.4.2.2.2 View created consent policies by an Identity Provider

Here, the user can see a list with all his Identity Providers and how many consent policies he has

created regarding that Identity Provider (Figure 34). After selecting a specific Identity Provider, the

user can see all the consent policies that he has created in order to hide attributes from it (Figure 35),

either explicitly for that Identity Provider or for an LoA where the Identity Provider is included.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

83

Figure 34. List of Identity Providers

Figure 35. List of created policies per Identity Provider

3.1.4.2.2.3 View created consent policies by Service Provider

Here, the user can see a list with all his Service Providers and how many consent policies he has created

regarding that Identity Provider (Figure 36). After selecting a specific Service Provider, the user can

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

84

see all the consent policies that he has created in order to hide attributes from it (Figure 37), either

explicitly for that Service Provider or for an LoA where the Service Provider is included. The user can

also modify or delete any policy.

Figure 36. List of Service Providers

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

85

Figure 37. List of created consent policies per Service Provider

3.1.4.2.3 Manage created consent policies

At any point while viewing her consent policies, the user has the option to modify them or even delete

them.

In order to modify a policy, the user can tap on the icon beside it, in which case the Edit Consent

Policy screen is appeared, filled-in with the details of the selected policy. The user can modify the

policy as he wishes and save her changes.

In order to delete a policy, the user can tap on the icon beside it, in which case a confirmation

dialog is shown and the consent policy is deleted.

3.1.4.3 Consent Management Web Front-end

The functionality of the consent management web front-end is the same as the functionality of the

mobile application.

As depicted in Figure 38, the Web frontend architecture consists of two parts:

 The interface itself will be based on AngularJS to have a smooth user experience. Bootstrap

UI is used for layouts.

 A backend server component will be put in place to do the heavy lifting and sending the

correct requests to the consent management API.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

86

Consent management front-end

Backend

AngularJS frontend

REST

Consent management API

Figure 38 Consent Management Web Front-end architecture

3.1.5 De-anonymization Risk Assessment

Risk management has been integrated in Identity Profile Management in order to offer a friendlier

and more coherent User Experience. De-Anonymizaton Risk is calculated for ID Providers Data,

Financial Information, and Service Providers.

The de-anonymization risks that are taken into account involve risk of attribute value inference, and

risk of user identification also known as k-Anonymity.

The risk of user identification is a metric of how many users exist with the same (known) attribute

values, therefore the risk corresponds to the probability that a user is uniquely identified based on the

revealed attribute values. In statistical terms, it is an indication of where the user fits within the user

population as this is segmented based on revealed attribute values.

Attribute value inference is essentially the risk that an ID Provider guesses the value of an unknown

user attribute based on the known attribute values of this user. In statistical terms, it is an indication

of where the user fits within the user population as this is segmented based on the revealed attribute

values and the unrevealed attribute that the risk is calculated for.

Please refer to the corresponding chapter for a more detailed description of risks related with Service

Providers.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

87

3.1.5.1 ID Provider Fields Risk

Screen 1: ID Provider Field De-Anonymization Risks

k-Anonymity is displayed as “{Number of users with similar revealed attributes} / {Total number of

users}”.

Each of the attributes where de-anonymization is applicable is associated with a percentage that

represents the possibility that the Identity Provider may correctly guess the value of the attribute.

Screen 2: ID Provider Field De-Anonymization Risks - Detail

A detailed view of the ID Provider Fields Risks displays the de-anonymization risks next to applicable

attributes. A star ‘*’ symbol is used to indicate which attributes have been used for risk calculation,

i.e. the known attribute values.

In a similar way, the Android app displays the k-anonymity rating for any given Identity Provider. It

also displays the de-anonymization risk for identity attributes that are not known to the Identity

Provider. A star ‘*’ symbol is used to indicate which attributes have been used for risk calculation.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

88

Screen 3: ID Provider De-Anonymization Risks (Mobile)

Calculation is based on the assumption that the Id Provider in question has a dataset of user records

similar to the one in Id Repository. Actual risk may be higher or lower than the calculated depending

on whether the Id Provider’s dataset is more or less accurate than the Id Repository one.

3.1.5.2 Financial Information Risk

De-anonymization risk for Financial Information is calculated following the same logic.

Screen 4: Financial Information De-Anonymization Risks

And the same layout is used for the detailed view of Financial Information records.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

89

Screen 5: Financial Information De-Anonymization Risks - Detail

The Android app displays the Financial Information Risk in a similar way.

Screen 6: Financial Information De-Anonymization Risks (Mobile)

3.1.5.3 Service Providers

The risks associated with Service Providers are separated in two different categories depending on

whether they use P-ABAC or not to authenticate their users.

Without P-ABAC authentication

If the user uses plain Open ID Connect to access a Service Provider, then anonymity is forfeited by

definition. The Service Provider will be able to uniquely identify the user because the user will explicitly

allow the Service Provider to access the user’s identity attributes.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

90

Therefore, the only risk of interest is the risk of Attribute Value Inference, regarding profile attributes

that the user forbids access to. The risk model is the same as described in earlier chapters about

Attribute Value Inference and the calculations are performed on the ID Repository dataset, based on

the assumption that the Service Provider has a statistically similar dataset. Actual risk may be higher

or lower depending on whether the Service Provider has a more or less accurate dataset than the Id

Repository one.

With P-ABAC authentication

Idemix and U-Prove are protocols that offer anonymity as well as un-traceability. This means that a

Service Provider cannot in principle identify a user, and also cannot conclude whether different service

sessions involve the same user.

However, and only within the context of an ongoing session, a Service Provider may be able to match

the user against a population of users with similar attributes. Also, the Service Provider may attempt

to infer the value of an unrevealed attribute, after having matched the user against a population of

users with attributes similar to the ones revealed for the ongoing session.

Note, that if the Service Provider collects population data based solely on Idemix or U-Prove sessions,

this data may not represent a statistically correct population model because sessions are un-linkable

with one another. Consider a scenario where a user attempts 99 sessions with the same attributes

while another user attempts a single session with a different set of attribute values. In such a scenario,

the collected dataset includes 99 similar records and a single different one, which however correspond

to only two users. Unless the population model is known, no meaningful risk can be calculated.

Therefore, it is assumed that the Service Provider has obtained in some other way a dataset with

proper population distribution against which users are matched and attributes may be inferred. The

risk calculated by ReCRED is based on the assumption that the Service Provider has obtained a dataset

similar to the dataset in Id Repository. The actual risk is higher or lower depending on whether the

Service Provider’s dataset is more or less accurate compared to the dataset of Id Repository.

3.1.6 P-ABAC and FIDO Integration

Privacy-Preserving Attribute-Based Access Control (P-ABAC) is emerging as a means for reliably

authenticating users to services while preserving their privacy. Idemix and U-Prove are among the

most well-known mechanisms, and are being integrated in the ReCRED architecture components

mainly through the activities of WP5, WP4 and WP3.

One way of taking advantage of FIDO in the ABAC architecture is employing the FIDO protocols in the

authentication phase between the User Device and the Issuer. Indeed, in this phase, the issuer needs

to know the identity of the user in order to disclose a cryptographic credential with her attributes.

Thus, using FIDO would allow for a reliable and password-less P-ABAC credential issuance. However,

this would be far from bringing to the User-centric mobile device authentication world the advantages

of P-ABAC.

A tighter integration of P-ABAC mechanisms in FIDO allows instead users to authenticate through their

devices to Online Services while preserving their privacy, while online services can attract more users

to their platforms.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

91

We here propose an integration of P-ABAC in the FIDO UAF protocol. An architectural overview is

provided in Figure 39.

Figure 39 P-ABAC-FIDO Proposed Integrated Architecture

Figure 40 summarizes the FIDO UAF authentication process as defined by the FIDO specification [38].

Please note that the “RP Web App and Web Server” component referenced in the FIDO specification

corresponds to the Identity Provider in the ReCRED architecture, and thus the following diagrams have

been adapted to reflect this mapping.

For the integration that we are proposing, we assume that the P-ABAC credential issuance phase,

which is not described here, has taken place before the authentication phase. Moreover, we assume

that using a well-established special constant value for the username and public key triggers the P-

ABAC-FIDO mechanism. This allows for the coexistence of the “normal” FIDO authentication

mechanism along with the P-ABAC-FIDO “credential show” mechanism.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

92

Figure 40 Authentication process from the FIDO UAF specification

Starting from the standard FIDO authentication mechanism depicted in the figure, we substitute the

public-key based identification with a privacy-preserving attribute-based authentication: instead of

the public-key cryptographic operations in steps 15 and 20, we employ a privacy-preserving attribute

proving. Furthermore, the FIDO policy in steps 3, 4, 5, 6, 10 is replaced with a P-ABAC policy.

The modified protocol is depicted in Figure 41 below.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

93

Figure 41 P-ABAC-FIDO integrated authentication protocol - proposed changes to the FIDO UAF specification
are highlighted in red

When the user tries to access an unauthorized Web resource, the FIDO server replies with an

AuthenticationRequest message as described in [38]. The FIDO server transmits to the client the

required P-ABAC attributes through a FIDO extension as defined in the following data structures.

Dictionary AuthenticationRequest {

 required OperationHeader header;

 required ServerChallenge challenge;

 Transaction[] transaction;

 required Policy policy;

}

Dictionary Policy {

 required MatchCriteria[][] accepted;

 MatchCriteria disallowed;

}

Dictionary Extension {

 required DOMString id; /* Bind to 'P-ABAC attribute' */

 required DOMString data; /* Required attribute encoded as base64 */

 required boolean fail_if_unknown; /* Bind to true */

}

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

94

After the required attributes reach the software authenticator module through FIDO ASM, the P-ABAC

proof is generated and sent back to the server serialized in a FIDO extension which is encapsulated in

the FIDO AuthenticatorSignAssertion structure.

Dictionary AuthenticatorSignAssertion {

 required DOMString assertionScheme;

 required DOMString assertion;

 Extension[] exts; /*Serialized P-ABAC proof*/

}

The latter structure is embedded in the FIDO AuthenticationResponse dictionary which is processed

by the server.

3.1.7 Credential Backup

According to the ReCRED architecture, Identity Providers may issue credentials that ReCRED users

store in their mobile devices. These credentials are stored in the mobile device and are encrypted

using the TEE, if it exists, in the mobile device.

ReCRED offers Credentials Backup & Restore functionality as a failover mechanism in case the user’s

device is lost, stolen or broken and credentials must be restored to a new device.

In order to facilitate the Backup & Restore functionality, ReCRED includes three components

developed specifically for this purpose:

 A backend that implements all the necessary business logic and performs the actual data

transactions with the Identity Repository.

 A web application that offers users an overview of the credentials that have been backed-up

in the Identity Repository.

 A mobile application that allows users to back-up credentials to the Identity Repository, as

well as restore credentials to the mobile device.

3.1.7.1 Backend

The backend is a Java application that provides a REST API offering the following methods:

 Create Credential (POST /api/credentials): this is the method that accepts a new

credential and saves it in Identity Repository. Essentially, this is the back-up method.

 Update Credential (PUT /api/credentials): overwrites an existing credential with a

new version. It is a refresh of the backed-up credential.

 Get All Credentials (GET /api/credentials): will return all credentials if the user has

administrator privileges, otherwise only the credentials of the current user.

 Get Credential (GET /api/credentials/:id): will return the credential with the

specified id. The id is a storage specific identifier which is unique for every credential. The id

is one of the properties returned for each credential by “Get All Credentials”.

 Delete Credential (DELETE /api/credentials/:id): will delete the credential with

the specified “id”.

 Search Credentials (SEARCH /api/_search/credentials?query=:query):

returns the results of a search operation performed on credentials based on parameter

“:query” where query is a sentence containing text to look for in attribute properties.

The backend is accessed both by the web application and the mobile application that offer front-end

interfaces to the backend API.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

95

3.1.7.2 Mobile Application

The following functionalities are currently offered:

 Display all credentials currently available at the mobile device.

 All credentials available in the device can be encrypted by TEE if it exists.

 Credentials can be restored from the Identity Consolidator server using the 3rd Party API.

 The credentials in the device can be backed up in the Identity Consolidator server.

In order to facilitate the Backup & Restore functionality, the Identity Consolidator, includes backend

functionality that offers the corresponding backup and restore API methods. Also, a web frontend

3.1.7.2.1 Main menu

In the main menu of the Credentials Backup & Restore application a user can see all the local

cryptographic credentials stored in the device as well as all the remote credentials of the user that are

available for backup.

Yet the way for authenticating the user of the device to the remote server for having access to the

backup data has to be resolved. Currently the remote backup service is OAuth v0.2 secured.

Figure 42: Credential Backup & Restore mobile application: Main page

3.1.7.2.2 Cryptographic Credentials stored on the device

The cryptographic credentials that are locally stored in the device are presented to the user in a list.

Currently, they are fetched from a local SQLite database of the application. This SQLite database is

also encrypted. Apart from the credentials data some metadata are also stored. The SQLite database

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

96

file is located in the folder of the device which is specific for this application’s identifier. Therefore,

the way which credentials will be stored at the device has to be defined so that we can proceed with

accessing them properly as ReCRED defines so. This has also to be unique and common between all

ReCRED mobile sub-applications in order to have a common basis. For example, in order to use a

cryptographic credential to prove an identity attribute to a Service Provider.

Figure 43: List with the Cryptographic Credentials stored in the mobile device

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

97

Figure 44: Page that shows to the user the details of a cryptographic credential

In the details of a locally stored cryptographic credential a user can see all the data and metadata of

this credential. Additionally, the user can choose to encrypt the data and backup the credential to the

Identity Consolidator server.

Figure 45: Details of an encrypted cryptographic credential

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

98

3.1.7.2.3 Cryptographic Credentials backup in the Identity Consolidator server

Currently, the details of the cryptographic credentials that are backed up in the Identity Consolidator

server are presented to the user in a list. The user can choose which credentials to load and/or

download and store to his mobile device.

Figure 46: List with the Cryptographic credentials that are backed up in the Identity Consolidator

Figure 47: Process of fetching a cryptographic credential from the Identity Consolidator server

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

99

3.1.7.3 Web application

The web application offers a way for users to view their credentials in the Identity Repository over the

web. The functionalities offered are only view, search, and remove. If a user has administrator

privileges then the user may access all records, otherwise view, search and removed are constrained

only to the user’s own credentials.

Figure 48: View list of user's backed-up credentials

Figure 49: Search user's credentials

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

100

Figure 50: View the details of a credential

Figure 51: Delete a credential

3.1.8 OpenAM-based P-ABAC

In order to have a seamless integration between P-ABAC architecture and OpenAM infrastructure I is

required to design a protocol able to mix the functionalities between the components of such two

frameworks. Indeed, verifying IdPs should be able to seamlessly verify P-ABAC credentials and

collaborate with OpenAM components to allow or deny users from accessing resources on Service

Providers. To this aim we developed an OpenAM module able to understand the FIWARE Open

RESTFUL API protocol. A very important requirement to be matched is the preservation of the

anonymity of the user: it is an obvious feature in P-ABAC but it requires to be considered also in the

integration with OpenAM protocols, where normally the identity of the user is known.

Note that an Identity Provider in OpenID Connect proves the identity of a user to a service, while an

Identity Provider in P-ABAC is the issuer of the credentials. So we define:

 Verifying Identity Provider: the OpenAM module

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

101

 Issuing Identity Provider: the Idemix/U-Prove credentials issuer

The following figure shows the high-level flow of how a user can access a service provider using PABAC.

The diagram has following entities:

 Client: a client application to access the service of the service provider. This can, for example,

be a mobile browser

 PABAC App: a mobile app that has cryptographic U-Prove and Idemix capabilities

 Service provider: a service (without FIWARE capabilities) that makes use of OpenAM

 Verifying IDP & FIWARE: The Verifying IDP based on OpenAM is closely integrated with

FIWARE to verify end user credentials. This combination can, for example, be part of the

ReCRED identity consolidator.

On a high level, the following steps are executed:

 The client tries to access the service

 The service provider launches an OpenID Connect authentication request to the verifying IDP

 The verifying IDP now needs to be able to launch the end user’s mobile app to proof the

attributes. The mobile app needs to know the FIWARE endpoint, what to proof and also have

a session identifier.

There are two ways to do this in a user-friendly way:

o If the user makes use of a client on a mobile phone, the information is shown as a link

that opens the application with the required parameters.

o If the user client is not on a mobile device, a QR code is shown that contains the same

link. The user can easily scan the code to open up the application.

 After showing the link or QR code, the client will start polling the verifying IDP. The verifying

IDP validates with FIWARE, based on a session identifier, whether the attribute exchange was

successful.

 The PABAC app can now execute the necessary protocols with FIWARE to proof the user’s

attributes.

 Now, when the Verifying IDP checks with FIWARE again whether a particular session identifier

has authenticated. As this is now the case, the Verifying IDP retrieves the attributes.

 Using standard OpenID connect mechanisms, the Verifying IDP can now send an authorization

code to the service provider. The service provider can exchange this code with an access token

and then finally retrieve the attribute.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

102

Client Service Provider
Verifying IDP

(OpenAM)
PABAC App FIWARE

Access secure page
Redirect to IDC OpenAM

..with OIDC Auth Request (“please authenticate this user”)

Show QR code (or link on mobile device) to launch PABAC
QR (or link) includes: fiware endpoint, what to proof, session identifier

 Proof attributes (for the specific session identifier)

Redirect to SP

...with Authorization Code

Request Access Token &
ID Token

(Pass Authorization Code)

Grant Access Token
 & ID Token

User invokes PABAC App
by scanning QR (or clicking link)

/userinfo (incl access token)

Info (user>18y)

Authentication completed?
Get data for session

No data

Not authenticated

Authentication completed?
Get data for session identifier

User > 18

Put data in session

The mobile browser
will now start

polling whether
authentication is
finished or not.

These calls go on in
the backend until
data is proven to

IDC FIWARE

Figure 52 Protocol to integrate OpenAM within P-ABAC architecture

3.1.9 IRMA-FIWARE Integration

The integration of the IRMA implementation targeted to mobile devices (IRMA for short), described

in Section 2.2.2.2, and the FIWARE Privacy Open RESTful API Specification (FIWARE for short),

described in Section 2.2.2.1, aims at retaining the well-defined and general, support of multiple ABAC

protocols of FIWARE while retaining the user-centric and device-centric approach of IRMA.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

103

Figure 53 Mapping of the IRMA Verification Protocol into FIWARE Open RESTful APIs

Figure 53 summarizes the mapping of the IRMA verification protocol to FIWARE. A similar mapping is

done for the issuing protocol.

Rectangle 1 contains the IRMA interactions that can be mapped to the FIWARE method

PresentationToken createPresentationToken(…) in the interface associated to the

User.

RequiredAttributes represents the data structure which is returned from the GET call towards

the resource /api/v2/verification/{verificationID} of the IRMAServer and

conceptually can be mapped on the structure PresentationPolicy specified by FIWARE.

DisclosureProof represents the data structure to be passed as parameter to the POST towards the

resource /api/v2/verification/{verificationID}/proofs of the IRMAServer, and

can be mapped on the FIWARE structure PresentationToken.

Rectangle 2 contains the IRMA interactions that can be mapped to the FIWARE method

PresentationTokenDescription verifyTokenAgainstPolicy(...).

SessionToken is the identifier of the ongoing verification session and one of them is created each

time a ServiceProvider sends to the IRMAServer a DisclosureProofRequest. We thus map the

SessionToken to its related DisclosureProofRequest and use it in the PolicyUID

attribute when mapping the DisclosureProofRequest to the FIWARE PresentationPolicy.

Moreover, to allow the adaptation, as PolicyUID is defined as being of type AnyURI, we can define

it as APIAddress+SessionToken, as in the example below:

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

104

policyUID =

https://<irmaservername>/api/v2/verification/<SessionToken>;

The DisclosureProof (which in the IRMA API server source code is called ProofList and is an

array of “Proof” objects, which are defined in the IRMA “credentials_idemix” component),

represents the list of cryptographic proofs related to DisclosureProofRequest. The

DisclosureProof, as already mentioned is mapped to the structure PresentationToken

defined by FIWARE.

As final remarks, we have to take into account that a critical point on the integration of the two

protocols, IRMA and FIWARE, is that these are based on different architectures: IRMA relies on an

intermediate entity, the IRMA API Sever, while FIWARE assumes the communications to occur end-to-

end.

3.1.10 Attributes and Policies for P-ABAC

Policies in the P-ABAC infrastructure are managed by the ABAC reasoning tool. The tool’s principle

function is the evaluation of resource requests based on existing policies. This is the policy decision

point (PDP) which is structured based on the XACML format.

The reasoning tool core function revolves around the following process: A request is issued by a user

to access a specific resource. The request includes the resource in question and the attributes that the

user chose to reveal. Then the tool transforms the request in an XACML accepted format, evaluates

the request based on existing policies (collectively stored in XACML format) and returns the decision.

Based on that core we have extended the reasoning tool in order to easily manage policies. These

includes a web interface for the network administrator to create, view, delete policies and a policy

recommendation system.

The rest part of this section is divided as follows. Subsection 3.1.10.1 will provide the network

administrator’s point of view in creating policies. In subsection 3.1.10.2 we will take a closer look on

the PDP. Subsection 3.1.10.3 will view the data collection of the Reasoning Tool and finally on

subsection 3.1.10.4 the policy recommendation module.

3.1.10.1 Access Control Policy Management

The Access Control Policy Management module is a Web front end to facilitate the network

administrator in creating Policies. Specifically, he/she will be able to manage Attribute-Based Access

Control (ABAC) Policies and Account-Based Control (AccBAC) Policies.

Creating ABAC Policies is achieved by specifying the resource type and the relative attributes that

should be present to permit its’ usage. Following is a screen shot of the Create ABAC Policy Tab.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

105

After we have created our ABAC policies we can view them by accessing the Show ABAC Policies tab.

Following is the create and view of AccBAC policies. AccBAC are policies aimed to give a specific

account access to a resource.

Figure 54 screen shot of the Create ABAC Policy Tab

Figure 55 Show ABAC Policies tab

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

106

3.1.10.2 Policy Decision Point (PDP)

The PDP is the Reasoning Tool core function which evaluates the incoming requests based on the

network administrator’s policies. The whole process is based on XACML an attribute-based access

control policy language. Following is a typical example of the PDP evaluation.

First the request is received in a JSON format and is transformed to XACML acceptable JSON format.

An example of the request is the following.

Figure 56 AccBAC Policies creation

Figure 57 AccBAC Policies View

Figure 58 PDP Request Example

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

107

Then the request is evaluated against the policies that are collectively stored in an XACML format and

the PDP returns the request decision (Permit/Denied). An example of a Policy is the following.

3.1.10.3 Data Collection

The Access Control Reasoning Tool uses a database to store information on policies and requests. The

policies are stored in order to properly manage them through the access control management module.

And the requests are stored in order to keep a log of the requests but also to be used in the policy

recommendation system.

Following are examples of the database tables, policies and requests.

Figure 59 PDP Policy Example

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

108

3.1.10.4 Policy Recommendation System

The policy recommendation system is a collection of algorithms which is responsible for making

recommendations to the network administrator to improve the current policies. Major goals include

improving ABAC policies (e.g. bundle policies, merge policies, delete obsolete policies) and decrease

of AccBAC Policies by replacing them with ABAC policies.

Recommendation policies algorithms are deployed under two settings. The first setting is an

automated process executed when a new policy is created and the second is initialized by the network

administrator.

When a new policy is created is firstly checked for duplicates and then for redundancies. If a duplicated

is discovered, then the policy should not be created. If a redundancy is discovered, then a

recommendation to the network administrator is presented to choose an appropriate action.

The redundancy can be of two types. The first type of redundancy occurs when the policy is already

covered by a more general policy. In this case the recommendation for the network administrator will

be to remove the new policy. The second type occurs when the policy is a more general policy of a

subset of already defined policies. This makes the other policies obsolete and a recommendation to

the network administrator is presented to remove the obsolete policies.

Figure 61 Database table: policies

Figure 60 Database table: requests

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

109

The network administrator also has the option to request policy recommendations from the system.

These policy recommendations can be derived from various methods. One of them is completeness

in existing policies. For example:

“if a user is student and male”, he can get access to the Internet

“if a user is student and female”, she can get access to the Internet

The previous two statement are complete when all options of the sex attribute are presented and can

be replaced with

“if a user is student”, he/she can get access to the Internet

Here the system will recommend to the network administrator that the two first policies can be

replaced with the later policy. This bundles an existing subset of policies into one.

The second method recommends policies based on partially complete policies. This effectively

recommends to the network administrator a policy with a high probability of being a valid one.

The third method makes recommendations based on requests logs. The logs contain information that

can be used to make policy recommendations. Specifically, we are using generative models (Restricted

Boltzmann Machines and Variational AutoEncoder) to model the hidden distribution of the data. This

allows us to generate new policies by sampling the hidden distribution.

3.1.11 ABE-Based P-ABAC Solution for Wi-Fi

The work reported in this section has been presented at “Workshop on Hot Topics in Planet-scale

mObile computing and online Social neTworking" (HotPOST) 2016 [69]. It shows how Attribute-Based

Encryption (ABE) can be used for P-ABAC in a practical scenario.

Two mainstream techniques are traditionally used to authorize access to a WiFi network. Small scale

networks usually rely on the offline distribution of a WPA/WPA2 static pre-shared secret key (PSK);

security hence relies on the fact that this PSK is not leaked by end user, and is not disclosed via

dictionary or brute-force attacks. On the other side, Enterprise and large scale networks typically

employ online authorization using an 802.1X-based authentication service leveraging a backend online

infrastructure (e.g. Radius servers/proxies). In this work, we propose a new mechanism which does

not require neither online operation nor backend access control infrastructure, but which does not

force us to rely on a static pre-shared secret key. The idea is very simple, yet effective: directly

broadcast in the WLAN beacons an encrypted version of the secret key required to access the WLAN

network, so that only the users which possess suitable authorization credentials can decrypt and use

it. This proposed approach clearly decouples the management of authorization credentials, issued

offline to the authorized end users, from the actual secret key used in the WLAN network, which can

thus be in principle changed at each new user’s access. The solution described in the paper relies on

attribute-based encryption, and is designed to be compatible with WPA2 and deployable within

standard 802.11 management frames. Since no user identification is required (access control is based

on attributes rather than on the user identity), the proposed approach further improves privacy. We

demonstrate the feasibility of the proposed solution via a concrete implementation in Linux-based

devices and via relevant testing in a real-world experimental setup.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

110

With the increasing number of smart mobile devices, mobile users are willing to have ubiquitous

access to the Internet. As predicted by Cisco [17], the number of personal mobile devices will grow to

8.2 billion by 2020. However, the existing cellular network (i.e., 3G, 4G, LTE) is not able to support this

growing demand of mobile users. As a consequence, the widely available WiFi systems are considered

to be the main choice for offloading the data traffic [18][37]. Cisco [17] predicted the amount of

offloaded traffic from 3G and 4G to increase to 48% and 58%, respectively, by 2020. However, open

un-protected WLANs, deployed in several public locations, are vulnerable against security attacks [34],

for which several protocols have been designed in order to tackle this issue [24].

3.1.11.1 Introduction

An important challenge in using WiFi connections is to provide a secure and convenient way for user

authentication and access control. Typically, upon connecting to an open WiFi network, the user is

presented with a splash page that requires to authenticate or register. On the other side, access

control in protected WLANs is non-trivial: the user needs credentials, which have to be obtained

through another channel or offline, to connect to a protected network. Although traditional security

protocols, i.e., Wired Equivalent Privacy (WEP) and WiFi Protected Access (WPA) are prone to several

security attacks [24][27], these can be prevented by employing WPA2, with e.g. IEEE 802.1X [16].

However, when a service provider deploys such advanced authentication mechanisms, or even Radius-

based authentication federations, it is required to setup and maintain online, interactive

authentication infrastructures. In this scenario, an untrusted WiFi Access Point (AP) might threaten

users’ privacy, since a curious service provider would be able to track the clients connected to the APs

[26].

We believe that attribute-based access control (ABAC) [32] is a promising solution for providing

secure, privacy-preserving authentication and access control in such scenarios. ABAC is an access

control mechanism in which the access of the users to a specific content/resource/object is specified

based on the attributes of the user (e.g., occupation). The main advantage of ABAC compared to the

other access control mechanisms, such as role-based or identity-based access control, is its flexibility

especially in dynamic access control decisions, where there is no a priori information about the users,

and large scale scenarios[31].

Recently, several researchers tend to adopt Attribute-Based Encryption (ABE) [35] to provide privacy

and ABAC solutions in several scenarios, such as online social networks [22], cloud computing[33], and

location-based services [28]. ABE provides fine-grained access control over data through defining

attribute-based access policies. In particular, Ciphertext Policy Attribute-Based Encryption (CP-ABE)

[23], which is an instantiation of ABE, allows the data owner to encrypt data specifying expressive

access control based on a set of attributes. Only the users who have the right attributes in their

decryption keys, will be able to decrypt the ciphertext. In this section, adopting CP-ABE, we propose

WI-FAB, an Attribute-Based WLAN access control mechanism, without pre-shared keys and backend

infrastructures. In our proposed approach, we introduce a clear separation between the

authentication and issuance infrastructure, and the Authorization infrastructure. In particular, we

encrypt the WPA2 secret, utilized to secure the WiFi connection, using CPABE and then divide it into

several chunks. We then insert each chunk in the WLAN beacons and broadcast it in the network. Only

the users who can rebuild the information included in beacons and decrypt it, and hence can retrieve

the WPA2 secret, are authorized to connect to the network. To the best of our knowledge, the

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

111

proposed approach is the first that does not require any pre-shared key. Through extensive

experimental results, we show that WI-FAB is secure, efficient and scalable.

3.1.11.2 Background

In this section we provide background knowledge on the concepts that we adopt in our proposed

approach.

3.1.11.2.1 Attribute-Based Encryption

Attribute-Based Encryption (ABE) [35], is a powerful public key encryption scheme, in which

encryption and decryption are based on descriptive attributes (such as age, gender, or occupation).

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [23] and Key-Policy Attribute-Based Encryption

(KP-ABE) [30] are the two main types of ABE. In CP-ABE, the data owner enforces an access policy on

the ciphertext. A user will be able to decrypt the ciphertext, if and only if, her decryption private key

satisfies the defined access policy. While, in KP-ABE the access policy is bound to the decryption key

of the user. She is able to decrypt a ciphertext if the attributes specified on the ciphertext matches

her key’s access policy. Since CP-ABE provides the data owner with a means to have more control over

the data, more researchers have concentrated on adopting CP-ABE in several applications [36]. In the

following we provide explanation of the CP-ABE basic functions:

• Setup. Taking a security parameter as input, it outputs the public parameter PK, and a

master key MSK.

• KeyGen. Taking a set of attributes SU, the master key MSK and the public parameter PK,

it outputs a decryption key SKSU reflecting the given attributes.

• Encryption. Taking as input a message M, an access policy Π, and the public parameter PK,

it outputs the ciphertext E.

• Decryption. Taking as input the ciphertext E that is encrypted under the access policy Π,

the decryption key SKSU, and the public parameter PK, it outputs the message M if and

only if SU “satisfies” the access policy Π.

ABE has several advantages compared to the other pubic key encryption methods [20]: (i) ABE

provides fine-grained access control over data through allowing the data owner to define expressive

access policies based on the attributes; (ii) the proposed approaches based on ABE are scalable and

independent of the number of authorized users; (iii) ABE is efficient in terms of communication,

storage and key management overhead. This is due to the fact that there is no need for sharing any

secret between the parties.

3.1.11.2.2 Attribute-Based Access Control

Attribute-based access control (ABAC) [32][29] is a flexible access control method in which the

acceptance or rejection decision for accessing a resource is made based on the attributes of the

requester. ABAC is indeed efficient in terms of communication overhead between the requester and

the resource owner. This is due to the fact that the two parties do not need to agree on a pre-shared

key to access the resource. Moreover, ABAC preserves the privacy of the users in the sense that the

access credentials are not bound to the user identity. Instead, the resource owner only defines the

access policies for the resource, and the user will be authorized to access the resource if and only if

her credentials, which are bound to her attributes (such as citizenship or group membership) satisfy

the access policy.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

112

3.1.11.2.3 WPA2 Protocol

The Wi-Fi Protected Access 2 (WPA2) protocol [19] is a rectification of the 802.11 standard, which is

introduced in order to address the security vulnerabilities of the Wi-Fi Protected Access (WPA)

protocol for wireless networks. WPA2 supports the use of Advanced Encryption Standard (AES) in

order to provide data confidentiality and integrity. Moreover, WPA2 provides both personal and

Enterprise authentication capabilities [21]: in the personal authentication method, WPA2 makes use

of Pre-Shared Key (PSK), while, in the Enterprise mode, the users need to be authenticated based on

the IEEE 802.1X.

3.1.11.2.4 IEEE 802.11 Beacon Management frames

The IEEE 802.11 standard [15] defines several subtypes of management frames. Among these, Beacon

frames are broadcast periodically by the access point to advertise its presence, provide the SSID (i.e.

the name of the wireless network) and announce its capabilities and other parameters to other

wireless devices within its range. These data included in Beacons are enclosed in a sequence of field

tuples called Information Elements. Of specific interest for this work are Vendor-Specific Information

Elements, which are used to carry information which is not explicitly defined in the IEEE 802.11

standards.

3.1.11.2.5 Fountain Coding

Digital fountain (also known as fountain coding) first introduced in 1998 in order to provide a reliable

distribution of bulk data to a large number of users [25]. Fountain coding allows a data owner, who

wishes to send a data consisting of a sequence of m equal length packets, to send a stream of distinct

packets (called encoding packets or droplets) into the network. The receiver will be able to reconstruct

the source data by receiving any subset of the encoding packets composed of exactly m number of

packets. Fountain coding is reliable, in the sense that it guarantees all the intended users will receive

the data source. Moreover, it provides an efficient and on-demand method of sending data to the user

in a lossy environment.

3.1.11.3 Proposed Approach

We have devised a privacy-preserving attribute-based access control mechanism for resources which

are protected by a shared secret, leveraging the CP-ABE scheme proposed in [23]. Figure 62 shows an

overview of our proposed approach. We use CP-ABE to encrypt a secret that grants a single access to

a resource.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

113

Figure 62 CP-ABE based proposed ABAC mechanism

An authority A generates a master key MSK, a public key for each attribute it wishes to support, and

also a key SKSU, associated to a set of verified and appropriate attributes SU, for each user U.

Let KR be the secret that protects a single access to a resource R, and Π the attribute-based policy that

a user V holding R wants to enforce on the access to this resource. Then V encrypts KR using CP-ABE

according to the policy Π and publishes the encrypted secret C = ABEΠ(KR).

The users which own the keys whose set of associated attributes satisfy the policy Π can successfully

decrypt C and obtain KR. KR can subsequently be employed to access the resource R once.

3.1.11.3.1 WI-FAB

We employ the above-described access control mechanism in a scenario in which the resource is a

wireless network protected by a WPA2 secret. We call the below-described system WI-FAB, outlined

in Figure 63. For each user U, an authority A, which can verify a set of attributes SU of U, releases a

private key SKSU. A WLAN service provider W that trusts the authority A, for each of its access points

AP in which it wants to enforce the policy Π:

1. generates a new random secret KW

2. sets KW as the WPA2 secret of the AP

3. encrypts KW using CP-ABE and the policy Π, yielding C = ABEΠ(KW)

4. sends C to nearby users in the IEEE 802.11 information elements of the beacons

5. when a user successfully connects to AP, the here described procedure starts again from

point 1.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

114

Figure 63 WI-FAB overview diagram

A user U who wishes to access the WLAN service provided by W:

1. captures beacons (by scanning or sniffing) from theaccess point AP

2. extracts the IEEE 802.11 information elements whichcontain C

3. attempts to decrypt C using her key SKSU

4. if the decryption is successful, i.e. if the attributes inSU satisfy the policy Π, then U holds

KW

5. U generates a random MAC address for her wireless interface

6. U employs KW to generate a WPA2 configuration and connects to AP using the WPA2

protocol

Note that KW is used by the WPA2 protocol to generate a per-client session key. Thus, when W

generates a new secret for an access point and sets it as the new WPA2 secret, the users which are

already connected to that access point are not disconnected. Moreover, the transmission of C =

ABEΠ(KW) in the IEEE 802.11 information elements of the beacons can be encoded using fountain

coding (§ Section 2). In this way if the size of C exceeds the maximum size of a single information

element, it can be encoded into smaller droplets. The user can obtain C by capturing enough of these

droplets and using fountain (de)coding. Figure 64 sketches the proposed format of the Information

Elements contained in the beacons emitted by the access point. The first fields are employed as

specified in the IEEE 802.11 standard [15], i.e. the Element ID (one octect) contains the value 221,

assigned to Vendor-Specific Element IDs; the field length (one octect) is set to the aggregated size of

the subsequent fields; and OUI (three octects) should contain an identifier assigned by IEEE, but for

experimentation purposes is temporarily set to an arbitrary (unassigned) value. The index field (one

octect) is incremented modulo 256 each time that the AP changes the WPA2 secret, and is used by

Stations to discard collected droplets associated to WPA2 secrets which become invalid. The nchunks

(one octect) and seed (two octects) fields contain respectively the total number of chunks in which C

has been divided, and the pseudo-random seed used for the current droplet. Finally, the data field

(variable length) contains the actual droplet data.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

115

Figure 64 Format of the Vendor Specific Information Elements included in the IEEE 802.11 beacons broadcast
by the access point

3.1.11.4 Implementation

We have performed a Linux-based preliminary implementation of our proposed system, summarized

in Figure 65. Although this implementation has not yet been tested on actual embedded and mobile

devices, we foresee no big obstacles to its porting to at least other Linux-based operating systems

such as OpenWrt/LEDE for the AP part, and Android for the STA part.

Note that our implementation did not require changes to the Linux kernel, but only to userspace tools

such as hostapd and iw, integrated with an implementation of a custom variant of the fountain LT

codes and bash scripts. For the CPABE part, we are employing the implementation of [23] provided at

[11]. Further details are given in the remainder of this section.

Figure 65 WI-FAB implementation overview

3.1.11.4.1 Fountain Coding

We call FCE and FCD the implementations of the fountain coding encoder and decoder. FCE

continuously reads the contents of a specific file and provides droplets to a configured named pipe.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

116

Droplets include an index number, as described in Section 3.1. When FCE is instructed to reload the

contents of the file, the index is increased. FCD performs the inverse operation: it continuously reads

droplets from a named pipe and when is able to reconstruct the original information it writes it to a

file.

3.1.11.4.2 Access Point

The hostapd daemon is a highly configurable user space IEEE 802.11 access point implementation that

employs the nl80211 Linux API. Its source code is publicly available at [12]. Please note that hostapd

already provides a mean to configure static Information Elements to be included in the access point

beacons. Our modifications to hostapd allow to: 1) provide a dynamic stream of Information Elements

through a local named pipe, and 2) change the configuration of the WPA2-PSK keys without restarting

the demon and without disconnecting the users that are already connected. We have devised and

implemented a bash script that periodically:

• generates a new random 256 bit WPA2 key S

• encrypts S with CP-ABE using a configurable policy and the supplied CP-ABE public key and

stores it in a file F

• configures S as a new WPA2-PSK secret on hostapd

• instructs FCE to reload F and to provide its droplets to hostapd (through the named pipe).

In order to allow a reasonable time for the connection of the users, we keep the last two generated

WPA2-PSKs active at the same time. This is possible as hostapd supports the use of multiple coexistent

WPA2-PSKs.

Note that the above implementation is only an approximation of the scheme described in Section 3,

as the WPA2 key is changed at regular intervals instead of being changed each time a user successfully

connects to the AP.

3.1.11.4.3 Station

iw is a configuration utility for wireless devices. Its source code is publicly available at [13]. Among its

features, it allows to instruct the wireless driver to perform active and passive scans and to output the

results. We have performed minor modifications to iw to change the way in which the IE contained in

the beacons are displayed. In the future we plan to employ wpa_supplicant [14] instead, which is a

standard tool in Linux-based OS and Android OS, responsible for the connection to IEEE 802.11 WLANs.

We have developed a bash script that runs iw based active scans multiple times and sends its output

through a named pipe to FCD. When FCD has collected enough droplets to reconstruct the contents

of F, a decryption attempt, using CP-ABE and the configured secret key of the user, is made. If the

decryption is successful (i.e. if the supplied secret key of the user is associated to a set of attributes

that satisfies the policy configured at the access point), the decrypted WPA2-PSK secret is included in

a wpa_supplicant configuration file and a connection to the access point is performed, without the

need to interact with the user.

3.1.11.5 Results

This section shows the effectiveness of the proposed solution in a real-world experimental setup in

our lab. We are employing laptops (on the same desk) with a Linux-based OS running the

implementation described in Section 4. The wireless NICs employ the rt2800usb driver module. The

version employed for the CP-ABE tools is 0.11, while our modified hostapd and iw are derived from

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

117

versions 2.5 and 3.3, respectively. Unless explicitly stated, we have configured at the AP a beacon

interval of 102.4 ms (i.e. the default value of hostapd) and a policy with four attributes.

In the first experiment, we demonstrate the effectiveness of fountain coding as opposed to the

approach of just dividing the encrypted secret into numbered chunks.

Figure 66 ECDF associated to the number of collected beacons needed to reconstruct the encrypted secret
with and without fountain coding (FC)

Figure 67 Time needed for the station to connect vs. number of attributes in the AP policy

Figure 68 Time needed for the station to connect vs. random WPA2 key regeneration interval (500
connection attempts for each regeneration interval, policy with 4 attributes)

Figure 66 shows the empiric probability (on 1000 samples, i.e. station connection attempts) of

recovering the encrypted secret (divided into 16 chunks) vs. the number of collected beacons. Beacon

collection make up the majority of the total time needed by the station to successfully connect to the

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

118

AP. Although our fountain coding implementation has room for substantial improvement, the

performance increase of the system is promising.

In the second experiment, we change the size of the policy by varying the number of contained

attributes. This change the size of the encrypted secret and thus the time needed for the station to

connect to the AP.

Figure 67 shows how the number of attributes affects the performance, for a series of 500 connection

attempts for each set number of attributes. The size of the encrypted secret depends on the number

of attributes employed in the policy. In the third experiment we modify the WPA2 key changing

interval and observe how this change affects the time needed by the stations to connect to the AP. In

Section 3.1 we propose to change the WPA2 secret each time a new station successfully connects to

the AP. The results shown in Figure 68 support the feasibility of this proposal.

3.1.11.6 Conclusions

We introduced a new attribute-based access control mechanism based on CP-ABE, called WI-FAB. We

proposed to employ our mechanism in the scenario of protected WLANs and we implemented a

working prototype. We finally showed and discussed the results obtained in a real-world experimental

setup.

In the future, we plan to extend the proposed approach to leverage the multi-authority CP-ABE

schemes. This will enable federation scenarios in which multiple entities will be able to issue attribute-

based credentials to users. Moreover, we plan to investigate further the use of fountain codes,

optimizing their usage, the implementation and the employed parameters, as well as other alternative

error correction mechanisms.

3.2 P-ABAC Components Mapping

The modules described in the above sections can be mapped to the main P-ABAC components, i.e.

User (Prover), Issuer and Verifier. The FIWARE Privacy Open RESTful API provides a common interface

for all the Idemix and U-Prove modules. The mapping is provided in the table below.

Table 4 P-ABAC Modules to Components Mapping

P-ABAC
Component

Module Section Function

User (Prover) ReCRED Wallet mobile app Section 3.1.1.2 Management of the P-ABAC
Credentials

User (Prover) Backup mobile app Section 3.1.7 P-ABAC Credentials Backup

User (Prover) Consent Management mobile
app

Section 3.1.4 Manage the consent management,
i.e. define user-side policies on
attributes

User (Prover) Trusted Execution
Environment (TEE)

Section 3.1.3 Protect the secret parameters of
the P-ABAC protocols

User (Prover) De-anonymization risk
assessment mobile app

Section 3.1.5 Provide to the user an estimation
of their probability of being
deanonymized

User (Prover) P-ABAC and FIDO Integration Section 3.1.6 Provide a means to use P-ABAC
credentials over the FIDO Protocol

Issuer Credential Management
Daemon

Section 3.1.1 Issue P-ABAC credentials

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

119

Verifier OpenAM-P-ABAC Section 3.1.8 Provide a means to verify P-ABAC
attributes over the OpenID
Connect protocol

Verifier Attributes and Policies for P-
ABAC

Section 3.1.10 Policy definition, enforcement and
recommendation

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

120

4 Application Scenarios

4.1 Support to Financial Services

The financial services support pilot focuses on the loan-origination use case. Bank clients requesting a

banking product e.g. credit card or consumer loan, are required to present information including

personal, professional, financial and other details to the banking institution, depending on which their

request will be approved or rejected.

With the current infrastructure, anonymity is by default forfeited. Clients have to manually collect all

the necessary documents and, on top of that, they reveal unnecessary personal details because the

submitted documents include them by design. Finally, extra verification is necessary in order to ensure

the authenticity of the submitted documents, and additional time will be spent profiling and scoring

the client. This time-consuming and paperwork-intensive process can be vastly improved using the

ABAC architecture.

Every piece of information that the banking institution requests can be individually revealed and

certified by the corresponding authority -Identity provider in ABAC terminology- given the user’s

consent. The process can be automated since all data is electronically exchanged, and verification will

be effected with the use of electronically signed credentials. Furthermore, clients requesting a loan

may retain their anonymity if the banking institution decides that some non-revealing information

from a reputable authority is sufficient to approve the client’s request, for example instead of a full

name and address the client presents only a Citizen’s Identification Number from the Government

Taxation Office.

4.1.1 Before ABAC

The current situation in the Greek Banking environment involves mostly manual procedures. The steps

taken, starting from the request submission until the purchase of a banking product, may differ

depending on the product value and the risk involved. Extensive screening and detailed verification of

personal and financial data is applied for high risk products such as business loans, mortgages etc.

Simpler procedures are followed for lower risk products like consumer loans and credit cards. In all

cases however, a lot of paperwork is required with reference to the documents that must be

submitted with the client request, and a considerable amount of time will be spent for the verification

of the submitted data.

Although credit cards request-forms can be submitted by post, for all other products the client will

have to eventually visit the bank.

A bank employee will create a new (potential) client record and receive the client’s request-form along

with the necessary documents that list the client’s personal information (financial, social security,

health insurance, etc.). The documents’ authenticity will have to be verified either by simple

inspection or, depending on the value of the banking product, by direct contact of the originating

authority.

In the case of collaterals such as real estate, external partners such as real estate professionals may

be called upon by the bank to visit and inspect the property on location.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

121

In order to complete the client’s risk profile, the banking institution will collect additional data from

organizations such as the National Banking Information System. This information concerns existing

loans that the client has taken and loan payments that are overdue.

Finally, the banking institution may also collect information regarding the credit history of the client,

and then calculate the risk of the client not being able to make the payments for the requested bank

product.

At the end of the process the client’s request will be approved or rejected based on the risk score and

the customer’s profile according to the banking institution’s policy.

The “loan origination” use-case closely adheres to the “attribute based access control” paradigm,

considering that the user’s “banking profile details” are the attributes based on which the banking

institution will control the user’s access to the institution’s services i.e. credit card issuance, consumer

loan etc. The ABAC architecture provides considerable improvements regarding automation,

efficiency, security, and privacy which are issues causing significant concern especially in the context

of today’s banking environment.

4.1.2 After ABAC

Once the ABAC architecture is adopted, it is expected that the certificate-issuing authorities as well as

the banking institutions will deploy servers offering ABAC functionality.

4.1.2.1 Identity Providers

The certificate-issuing organizations are the Identity Providers. They store and certify aspects of a

user’s identity such as full name, address, telephone number, social security status, health insurance

status, annual income, financial obligations (outstanding balance), etc.

4.1.2.2 Service Providers

The banking institution is the Service Providers offering its products to potential customers.

4.1.2.3 Behavioral Authentication Authorities

Organizations such as mobile telephony providers can function as Behavioral Authentication

Authorities (BAA) providing second level authentication at the request of an Online Service. A mobile

telephony provider may compare a user’s current location with the recorded user’s usual

whereabouts based on the cell-towers that the user’s mobile device usually connects to. If there is no

match the authentication will fail.

4.1.2.4 LATCH

Users may also configure BAAs to lock the account that a user has with an Identity Provider. In case

multiple consecutive behavioral authentication attempts fail, a BAA’s ABAC server will use the LATCH

service to lock all the user’s accounts according to the user’s specifications.

Taking all the above into consideration, the financial scenario is shaped as follows.

4.1.2.5 The Financial scenario revisited

A user that wishes to have a credit card or consumer loan issued by a banking institution will navigate

to the banking institution’s web portal using the web browser of a mobile device (smartphone, tablet)

or desktop computer. The bank’s web portal is the front-end to its ABAC infrastructure.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

122

The user will be requested to provide certain information that will need to be validated. Such

information includes, full name, age, annual income, social security status, employment status etc.

The user already has electronic credentials for some of these details stored in the mobile device. The

user uses biometric authentication (fingerprint, voice, etc.) to unlock these credentials and submit

them to the bank’s web portal.

The user also uses the mobile device to visit the web portals of other authorities and have electronic

credentials issued for any additional information that the bank’s portal requests. The user either has

a separate user-login with each of these authorities or may use OpenID and OAuth authentication in

order to be identified at the authority’s server and have the necessary credentials issued. All the

credentials are electronically signed by the issuing organization in order to ensure their authenticity.

The credentials only include/reveal the specific information that the banking institution requests and

not the total of the user’s records maintained by the credential-issuing authority. The issued

credentials are transferred to the user’s mobile device and the user submits them to the bank’s web

portal.

The bank’s ABAC server may in addition request for second level behavioral authentication. The BAA’s,

e.g. Mobile Telephony Provider, ABAC server will retrieve the records of the user’s registered

behavior, e.g. mobile cell-towers that the user mobile phone usually connects to, as an indication of

the user’s normal whereabouts, and calculate the probability that the current user’s behavior matches

the user’s profile or not. If the authentication fails, the BAA may also lock the user’s accounts at other

ID Providers.

The bank’s ABAC server will examine and verify the credentials, consider the BAA’s response, and

apply the banking institution “access control” policy. This policy specifies the criteria that must be

fulfilled in order to accept or reject a client’s request for a credit card or consumer loan. If all criteria

are met the user will be issued the credit card or granted the consumer loan.

4.2 Campus Wi-Fi and Campus-Restricted Web Services

The Campus Wi-Fi pilot focuses on the access of students, professors and guests to the Campus Wi-Fi

and other Campus Web Services. The students and professors requesting access to one or more

Campus resources (e.g. research network with the permission to print), are required to present

information including personal (such as first and last name, age, street address, etc.) and educational

(such as year of study, scholarship, teaching years, etc.) attributes. The guests must be vouched by a

registered user in order to get access to some resources.

With the current infrastructure, the users reveal their full profile to get access to some resources with

a lot of unnecessary information. They use the traditional username/password scheme to

authenticate which nowadays is considered an insecure way. They also get access to various resources

by simple access control policies.

The authentication and the authorization procedure can be vastly improved using the ABAC

architecture. The pilot before and after ABAC and the advantages of using the ABAC architecture are

presented below.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

123

4.2.1 Before ABAC

When the students and professors register with their university, the university’s IT services create and

store their full profile within their infrastructure.

A user that wishes to get access to the campus Wi-Fi and the other resources can navigate to the

University’s web portal using the web browser of his/her mobile device.

Then the user uses his/her university username and password in order to authenticate to a particular

web service against the university’s Authentication and Authorization Server. This centralized

component has a complete view of the user’s profile and thus can provide the appropriate access to

the resources.

The Authentication/Authorization Server maintains a role-based access control list. This has the

disadvantage to not allow the definition of flexible fine-grained access control policies.

In summary, this paradigm has two important drawbacks; a user must reveal all of his identity to the

Authentication/Authorization server and the network administrator is unable to define flexible fine

grained access control policies. This results in privacy concerns from the user’s perspective.

4.2.2 After ABAC

When the students and professors register with their university, the university’s IT services create and

store some identity attributes (such as full name, title or department, etc.) within their infrastructure.

Furthermore, credentials of the identity attributes are issued and stored on user’s device.

A user that wishes to get access to the campus Wi-Fi and the other resources (with some permission)

can open the Campus Access mobile application and choose the network resources that he wants to

get access to.

Then the Campus Access mobile application informs him/her for the identity attributes required for

all the selected resources.

After the user’s explicit consent to release the identity attributes, the user authenticates with the

Authentication Server by using biometric authentication (e.g., fingerprint). This is achieved by utilizing

FIDO credentials that were created during the user’s registration.

After the successful authentication, the Authentication Server transfers the required identity

attributes to the Authorization Server via the OpenID Connect specification. To achieve this, the

Authentication Server is configured as an OpenID Connect Provider and it maintains an attributes

database which maintains the users’ identity attributes.

With the confirmed identity attributes, the Authorization Server checks against to its ABAC

XACML-compliant access control policies and grants or denies access to those resources. The

ABAC policies specify the criteria that must be fulfilled in order to accept or deny a user’s

request. If all criteria are met the user can get access to the required resources.

4.2.2.1 Advantages of ABAC

1. The users have the opportunity to use a very useful mobile application to get access to various

resources instead of the navigation to the University’s web portal to find a resource.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

124

2. The users do not have to validate their complete identity and their full profile in order to get

access to a resource. This approach allows users to reveal only a set of required identity

attributes and not to reveal irrelevant parts of their profile.

3. The Authorization Server grants access to the requested resources according to the complex

attribute-based access control policies instead of the simple policies. The ABAC policies also

take into account the level of assurance of the required identity attributes and the level of

criticality of the requested resources

4.2.2.2 Attributes and Attribute Values

The tables below present a list of identity attributes with a valid attribute value for a professor and a

student of the Campus Wi-Fi and Campus-Restricted Web services use case scenario.

4.2.2.2.1 Professor:

Attribute Attribute Values
First Name John

Last Name Andreou

Father’s Name Andreas

Gender Male

Birth date 1970-02-15

Age 46

Nationality Cypriot

Street Address 15, Athinon

Country Cyprus

City Nicosia

Postal Code 2710

E-mail
john.andreou@cut.ac.cy (university) ,
jandreou@gmail.com (home)

Phone Number
99-965423(mobile), 22-346529(home), 25-
233303 (work)

Title Professor

Department
Electrical Engineer, Computer Engineer and
Informatics

Start Date 2009-09-10

End Date -

Year of Study -

Semester -

Teaching Years 7

Chosen Courses -

Teaching Courses
Control Systems, Electronics II, VLSI Systems
Design

Number of passed
courses

-

Scholarship -

mailto:john.andreou@cut.ac.cy
mailto:jandreou@gmail.com

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

125

4.2.2.2.2 Student:

4.2.2.3 Resources (Authorization Server)

The table below presents a list of the resources for the Campus Wi-Fi and Campus-Restricted Web

services use case scenario.

Attribute Attribute Values
First Name Helen

Last Name Panayi

Father’s Name Stelios

Gender Female

Birthday 1994-02-15

Age 22

Cypriot Greek

Street Address 2, Machiton Eldyk

Country Cyprus

City Limassol

Postal Code 4651

E-mail
helen.panayi@cut.ac.cy (university) ,
hpanayi@gmail.com (home)

Phone Number 96-972325(mobile), 25-712093(home)

Title Student

Department Multimedia and Graphic Arts

Start Date 2012-09-10

End Date 2016-05-10

Year of Study 4

Semester 7

Teaching Years -

Chosen Courses
Virtual Reality, Web Design, Operating
Systems, Informatics

Teaching Courses -

Number of passed
courses

23

Scholarship Yes

Res

our

ce

ID

Resource (permission)

1 Internet

2 Moodle

mailto:helen.panayi@cut.ac.cy
mailto:hpanayi@gmail.com

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

126

4.2.2.4 Attribute-Based Access Control Policies

Some examples of the attribute-based access control policies of the Campus Wi-Fi and Campus-

Restricted Web services use case scenario are presented below. Those examples demonstrate the

flexibility that such an approach can offer.

 “If a user is a professor”, he can get access to the Internet.

“If the user’s first name is John and his last name is Andreou”, he can get access to the Internet.

“If a user is a professor, belongs to the Electrical Engineer, Computer Engineer and Informatics

Department and he is responsible for teaching the Pattern Recognition course”, he can get access to

the Print resource.

“If a user is a student, belongs to the Communication and Internet Studies Department, he is in the

seventh semester of his study and he chose the Web Design course”, he can get access to the

Research Network.

 “If a user is a student, belongs to the Multimedia and Graphics Arts Department, the number of

courses who has passed is more than 20 and his current year of study is less than 6”, he can get

access to the Webmail.

“If a user has a scholarship and she belongs to the Electrical Engineer, Computer Engineer and

Informatics Arts Department”, she can get access to the Research Network and Print resources.

“If a user is a professor with more than two teaching years in the CUT university”, he can get access

to the Research Network.

4.2.3 Towards Privacy-Preserving ABAC

In order to be able to provide unlinkability and untraceability of end-users we will employ

cryptographic credentials (Idemix and U-Prove) in the Wi-Fi pilot architecture. This will be achieved by

making the appropriate changes to the mobile app so it can accommodate cryptographic credentials

(and store them safely by utilizing TEE) and by enhancing the Authentication’s Server software stack.

Specifically, we will make the below changes:

3 Apps Web Resource (i.e., CUT Apps)

4 Webmail

5 Print

6 Research Network

7 File Server

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

127

 Mobile App: The mobile app will be responsible for the secure storage of the cryptographic

credentials. Also, it will encompass the Idemix and U-Prove stacks that will responsible for

releasing cryptographic credentials from the user device.

 Authentication Server: The Authentication will be responsible for the issuance and

verification of cryptographic credentials. In a typical scenario, a user will visit the

Authorization Server and then he will be redirected to the Authentication Server in order to

verify some identity attributes. Subsequently, the user will present its cryptographic

credentials to the Authentication Server, which will responsible for verifying the credentials

using the underlying Idemix or U-Prove stacks. After verifying the credentials, the

Authentication Server will provide the verified identity attributes to the Authorization Server

via the OpenID Connect specification.

From an implementation perspective, to achieve the aforementioned scenario in the

Authentication Server we will integrate the Idemix and U-Prove stacks within the OpenID

Connect Provider implementation (OpenAM). Specifically, we will implement a custom

authentication module that will allow the seamless use of the two underlying cryptographic

stacks and will be responsible for verifying presented P-ABAC credentials and releasing the

appropriate identity attributes to the Authorization Server.

4.3 Age Verification

Age verification is based on UPCOM’s Age Gate product, an attribute-based solution which can verify

if a user requesting access to an age-restricted online resource is above a certain age, without

revealing any other personal data. The online resource could be an age-restricted web site (e.g. porn

or violence related), specific content (e.g. an NC-17 movie) or a purchase (e.g. alcohol or tobacco). The

providers of those resources do not need to know any personal information of the users other than

their age.

The Age Gate product uses various alternative methods in order to verify the user’s birthdate, such as

trusted physical ID providers (government authorities, banks, universities, etc.) and electronic ID

cards. It can then use ABAC in order to issue cryptographic credentials, including only the (verified)

birthdate attribute, according to which the service provider can grant or deny access to specific

resources, based on well-defined policies. Those credentials are issued to the user’s device, either by

the ID consolidator or directly by a trusted IDP. The user can also backup those credentials to the IDC,

so that they can be recovered, e.g. in case of device loss.

During the age verification application scenario, the following roles are identified:

 The user (user device), who acts both as a recipient, requesting age-related cryptographic

credentials, and as a prover, against the online service that provides the requested age-

restricted resource.

 The online service, who acts as the verifier of the user’s age.

 The ID Consolidator and the trusted physical ID Providers, who act as issuers, issuing age-

related cryptographic credentials to the user’s device.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

128

Following is the course of actions for the Age Verification scenario:

4. The user requests access to an age-restricted online resource.

5. The provider’s server requests from the Age Gate service the initiation of the age verification

process.

6. The Age Gate creates and returns a QR code, which is displayed to the provider’s website.

7. The user scans the displayed QR code using the Age Gate mobile app.

8. The Age Gate mobile app authenticates the user (e.g. using biometric authentication).

9. Age Gate verifies the user’s age against the service provider’s policies, in order to grant or

deny access to the requested resource.

4.3.1 Before ABAC

Age verification is an extremely important, yet very difficult to solve problem, especially without

sacrificing user privacy. Current approaches fall into three main categories:

1. The user has to demonstrate evidence of ownership of a document which proves that he is an

adult, such as a credit card or a driver’s license. However, there are major issues with this

approach. First of all, sensitive information is inevitably revealed and personal data could also

be disclosed. In addition, this approach cannot guarantee that the user is the legitimate owner

of the provided proof. For example, a child could use her parent’s credit card or driver’s

license, in order to access age-restricted content. Last but not least, proper age verification

goes beyond the proof of being an adult. For example, the minimum age for drinking is USA is

21. Therefore, even if the user is the legitimate owner of a credit card, it does not necessarily

means that he is also above 21 years old.

2. The user has to demonstrate evidence of ownership of a document that explicitly states her

birthdate, such as an ID card or a passport. With this approach, the service providers can

determine the exact age of their users, however the rest of the problems with the first

approach also apply here. Especially when it comes to the user’s privacy, such legal documents

usually include even more personal data than a credit card.

3. The service provider includes an age disclaimer, with which the user must agree in order to

gain access to an age-restricted resource. This is a widely-used approach, which is mainly used

as legal cover for the service providers, hardly preventing any minors from accessing age-

restricted resources.

4.3.2 After ABAC

We strongly believe that ABAC, along with the acquisition of the user’s physical identity, can offer a

new approach to age verification, which provides a solution to all the problems related with the

current approaches.

The exploitation of the ABAC architecture benefits all involved parties. More specifically:

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

129

 The users can access age-restricted resources without having to share with the service

providers any personal or sensitive data other than the absolutely necessary (their birthdate).

 The service providers can verify the age of their visitors and grant them access to age-

restricted resources, according to specific policies that they can easily create and manage.

 Minors are protected against age-restricted content and/or products.

4.4 ISIC Student Discounts

The ISIC Student Discounts pilot focusses on enabling service providers to create and present users

with discounts based on specific user attributes. Discounts can be tailored to require specific attributes

to allow the user to access and redeem a discount. In other words, a user will not be presented or be

eligible for a discount if they do not meet the required attribute criteria put forth by the service

provider. Verification of attributes by a service provider will be with the help of trusted IdP’s as

opposed to relying on user for justification but will still be dependent on user consent to allow IdP’s

to share any information. The user therefore retains control and insight into what is being shared with

whom.

4.4.1 Before ABAC

Currently service providers collect attributes from user by consent to be able to target offers and

discount to different segments of their customers. This results in multiple service providers collecting

personal information about users without the user having any control or insight into how their

attributes are used by the service provider after giving the initial consent.

Service providers are furthermore limited in tailoring discounts to customer segments because do not

have access to a diverse set of user attributes and are restricted in acquiring this information from

trusted IdP’s. Any personal information that is collected from a user is often rich data (i.e. proof of

enrolment at a university) which may be disproportionate to the eligibility criteria for access to a

discount (i.e. user is a student).

4.4.1.1 Summary of the issues without ABAC

The usage of ABAC capabilities in the ISIC Student Discount pilot will help to mitigate and solve the

following issues:

1. Multiple service providers storing personal user information

2. User doesn’t have insight and control over their personal information

3. Service providers have access to rich data when assessing the eligibility of a user to access

a service

4. Limited to no option to verify the user’s attributes through trusted IdP’s

4.4.2 After ABAC

In this pilot, the user is provisioned with a consent management in the Identity Consolidator, where

the attributes can be managed. Also, the user can decide which attribute to be shared with which

service provider.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

130

The transaction based revenue model is used in this pilot. This means, percentages of the transaction

amount are distributed to Issuer, Merchant and Student user. In this context the privacy of the user is

maintained by only using three attributes, Transaction ID, Date and amount and only billing admin

role is authorized to see this information. However, Merchants, Students, Issuers can see their own

overview of the transactions.

When the student user performing a transaction, he can show the QR code based Student ID to the

merchant and merchant can scan that QR code to verify the student status. Here the merchant sends

a dynamic query to the Identity Provider to check the status, but doesn’t store any attributes locally.

During the transaction process, if the service provider needs to verify the age of the user, that can be

done in a private way, without knowing the date of birth of the user. The IdP can confirm with a binary

response about the user age. This information is used by the service provider to qualify the user to

access the service. For more complex attribute verification, multiple IdP’s can confirm different criteria

required for the eligibility of the user.

Overall, in student pilot, the privacy of the user is taken into account during registration,

authentication, attribute verification and also included in the business processes.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

131

5 Privacy and Security Considerations

5.1 Attacks and Privacy Issues in ABE and ABAC

In this section, we describe identified attacks and drawbacks from a privacy point of view for ABE and

ABAC systems. In general, from our survey we have observed that although many ABE and ABAC

schemes have been proposed in the literature, there is still no scheme that can eliminate all security

and privacy loopholes found in these systems.

5.2 Lack of Revocation

User revocation is a major issue in ABE systems, where each attribute is conceivably shared by multiple

users. As quoted in [52]: “Revocation of any single user would affect others who share his attributes.

Moreover, user revocation in attribute based systems may be flexible and occur in different

granularities. That is, it may require to revoke either the entire user access privilege, or just partial

access right of the user, i.e., a subset of his/her attributes. Existing CP-ABE schemes suggest associating

expiration time attributes to user secret keys.” For the same reasons described above, revocation is

also difficult to be achieved in ABAC systems.

5.3 Key Abuse Attack for KP-ABE

This attack was presented in [53], where the key abuse attack is introduced. In the KP-ABE, a user

secret key is defined over an access structure and does not have the one-to-one correspondence with

any particular user. As a result, a paid user is able to “share” his secret key and abuse his access

privilege without being identified. More seriously, malicious users may take this advantage to make

profits by abusing the access privilege. We call this kind of misbehavior as key abuse attacks.

5.4 Key Escrow

Most of the existing ABE schemes are constructed on the architecture where a single trusted authority,

or a key generation center has the power to generate the whole private keys of users with its master

secret information. A major drawback with these schemes is known as a key escrow problem [54]. The

key generation center could decrypt any kind of messages addressed to specific users by generating

their private keys. This is not suitable for data sharing typical scenarios where the data owner would

like to make their private data only accessible to designated users.

5.5 Attribute Hiding Attack in ABAC

ABAC policy may grand access to protected resources based on two complementary ways. At the first

one the user should hold a set of attributes in order to gain access. At the second the user should not

have the specific attributes (e.g., User should not be from Europe). In such a case ABAC is vulnerable

to attribute hiding attacks [55]. In this attack, a malicious user hides or alternates some attribute

values that he holds in order to get access to a resource that would be denied otherwise.

5.6 Revelation of Access Policy and Attributes to Untrusted Servers

In existing constructions of ABE, either the access policy or attributes should be attached in plaintext

to the data ciphertext to facilitate user decryption. These plaintexts, particularly data access structures

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

132

in ABE, reveal the data owner’s access policies when disclosed to untrusted servers, and hence have

privacy concerns.

5.7 Revelation of User's Identity in Multi Authority Scheme

This privacy issue of the CP-ABE scheme has been described (and resolved) in [56]. As the authors

quote: “In multi authority attribute-based encryption schemes, a user can acquire secret keys from

multiple authorities with them knowing his/her attributes and furthermore, a central authority is

required. Notably, a user's identity information can be extracted from his/her some sensitive

attributes. Hence, existing ABE schemes cannot fully protect users' privacy as multiple authorities can

collaborate to identify a user by collecting and analyzing his attributes. Also the central authority has

the power to decrypt every ciphertext, which seems somehow contradictory to the original goal of

distributing control over many potentially untrusted authorities”.

5.8 Mitigations to Enhance Security in ABE and ABAC systems

In the literature, many ABE schemes have been proposed that try to eliminate the above security and

privacy issues and at the same time try not to affect the performance of ABE systems. For example, in

[57] the authors try to create a revocation scheme for ABE. In particular, the authors can revoke one

attribute of a user instead of all attributes issued to him and the user can complete decryption as long

as the unrevoked attributes of the user satisfy the access structure. A comprehensive review of various

ABE schemes that address the identified issues for ABE can be found in [58] and [59].

5.9 Privacy considerations of Idemix and U-Prove

In this section, we analyze the privacy features and possible drawbacks of Idemix and U-Prove

anonymous credentials. Despite the fact that these two systems provide significant privacy

enhancements, we have observed that the literature does not include many works regarding their

privacy issues or potential drawbacks.

5.9.1 Threat Model

Privacy properties are defined with respect to assumptions about adversaries, which could be inside

the system, such as adversarial identity providers, or they could be external parties with access to

some or all of the information available in the system. Adversaries can try to disclose information

about user attributes or past actions through any available means. A party A that trusts a party B will

believe not only that B is trustworthy, but also that B takes measures to prevent adversaries from

gaining access to privileged and sensitive information, including mechanisms to defend against code

vulnerabilities. Also, trust is not necessarily permanent. That is, party A might cease to trust B if

evidence emerges that indicates B might be untrustworthy [60].

5.9.2 Comparison of Privacy features

Idemix features two kinds of credentials: Idemix pseudonyms and Idemix anonymous credentials. An

Idemix pseudonym is used for two-party returning-user authentication. An Idemix anonymous

credential, on the other hand, is used for third-party open-loop authentication, and provides full

privacy, including unobservability, anonymity, selective disclosure (including the ability to prove that

a numeric attribute is greater or less than a numeric constant without disclosing its value), issue-show

unlinkability, and strong multi-show unlinkability by the same party or different parties. On the other

hand, U-Prove has U-Prove tokens, which are used for third-party open-loop authentication. They

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

133

provide unobservability, anonymity, selective disclosure (but not the ability to prove that a numeric

attribute is greater or less than a numeric constant without disclosing its value), and issue-show

unlinkability. However, they do not provide multi-show unlinkability [61].

In U-Prove technology, the issuance of credentials is based on blind signatures. The issuer thus cannot

link an issued credential to the issuing session. However, for proving validity or attributes of a

credential, besides a zero-knowledge proof of knowledge of the recorded attributes, the issuer’s

signature is revealed. Different usages of the same credential are thus linkable. In order to ensure

unlinkability, a used credential would have to be reissued after every usage. On the other hand, Idemix

technology does not require revealing the signature for proving properties. Possession of a signature

is proved with a zero-knowledge proof. Therefore, multiple shows of the same credential can remain

unlinkable. As issuance is not based on blind signatures, the issuer can link an issued credential to its

issuance session. However, this does not immediately reveal the link with subsequent sessions where

the credential is shown. An important feature of Idemix technology is that it also allows to prove only

properties of recorded attributes, such as a range of an attribute value. Further, it is possible to prove

that committed values or values enclosed in a verifiable encryption are credential attributes [62].

5.9.3 Revocation

As mentioned in [63], unlinkability makes revocation difficult. The ability to revoke credentials is

usually taken for granted. In the case of privacy-friendly credentials, however, it is difficult to achieve.

As discussed in section 2, an ordinary CRL (Certificate Revocation List) cannot be used, since it would

require some kind of credential identifier known to both the issuer and the relying parties, which

would defeat unlinkability.

U-Prove credentials can be revoked by users because they do not have multi-show unlinkability, but

cannot be revoked by issuers, because they have issue-show unlinkability. Idemix credentials, which

have both multi-show unlinkability and issue-show unlinkability, are revocable neither by users nor by

issuers. U-Prove credentials have a Token Identifier, which is a hash of the public key and the

signature. Because U-Prove does not provide multi-show unlinkability, the Token Identifier, like the

public key and the signature, is known to all the relying parties. The user agent could therefore revoke

the credential by including the Token Identifier in a CRL. However, because U-Prove provides issue-

show unlinkability, the credential issuer does not know the Token Identifier, nor the public key or the

signature, and therefore cannot use it to revoke the credential.

Idemix has a credential update feature that can be used to extend the validity period of a credential

that has expired. This facilitates the use of short-term credentials that may not need to be revoked.

However, the credential-update feature can be used to implement credential revocation. Moreover,

short term credentials are an alternative to revocation, but they have drawbacks:

 short term credentials are costly to implement for the issuer;

 they impose a logistic burden on the user agent;

 they may become unavailable if the issuer is down when the validity period needs to be

extended;

 the user agent may be overwhelmed by the need to renew many credentials at once if it has

not been operational for an extended period of time.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

134

5.10 OpenAM P-ABAC Security Considerations

This section reports Security Considerations on the OpenAM-P-ABAC integration, described in Section

3.1.8.

The privacy of the end user is by maintaining anonymity in the authentication process. Especially, with

the OpenAM and P-ABAC integration, the issuance of crypto credentials does not allow to identify the

user. In the case where the user is accessing a new service, there is no traceability information stored

in the ID consolidator, this will ensure there is unlinkability of the user activities. The platform itself

do not monitor any activity of the user confirming the unobservability to maintain the privacy of the

user.

For the security part, the components (OpenAM, FIWARE, etc.) are hosted in a secure environment.

The Identity Providers, and the service providers are registered via secure communication. The access

to the applications/platform is managed by establishing right controls such as higher levels of

authentication.

5.11 FIDO Extensions for ABAC and Anonymous Credentials

This section reports Security Considerations on the FIDO-P-ABAC integration, described in Section

3.1.6.

FIDO aims at reliably identifying the user in order to authorize her. However, user identification may

not always be needed or desirable, as it may jeopardize the user’s privacy. Our proposed extension to

the FIDO UAF protocol, described in Chapter 6, aims at retaining the benefits of FIDO, especially in

terms of usability, while employing anonymous credentials to implement attribute-based access

control. Moreover, our proposed approach does not change substantially the FIDO UAF protocol, thus

we do not foresee any additional security threats.

5.12 Security Considerations for the IRMA-FIWARE integration

In this subsection we refer to the integration between the IRMA implementation targeted at mobile

devices and the FIWARE Privacy Open RESTful Specification presented in Section 2.2.2.1.

IRMA relies on JSON web tokens (JWTs) in its protocol steps. From the security point of view, the

service provider must know the RSA key used by the IRMA API Server for JWT signatures and verify

them consistently.

5.13 Privacy and Security Considerations in Idemix and U-Prove

implementation

In U-Prove technology, the issuance of credentials is based on blind signatures. The issuer cannot link

an issued credential to the issuing session. However, for proving validity or attributes of a credential,

besides a zero-knowledge proof of knowledge of the recorded attributes, the issuer’s signature is

revealed. Different usages of the same credential are thus linkable. In order to ensure unlinkability, a

used credential would have to be reissued after every usage. Differently from U-Prove, Idemix

provides the unlinkability capability by means of the usage of the concept of pseudonyms that allows

the user to show the same credential for different sessions.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

135

In terms of implementation, both the U-Prove protocol and Idemix protocol make use of RSA and ECC

primitives which provide a level of security equivalent to a 128-bit symmetric key. Also, considering

that these protocols involves the SHA-256 algorithm for hash functionalities, both protocols provide a

satisfactory level of security in terms of resilience to brute-force/forging attacks. The privacy

protection is given implicitly by the protocols specification. To eventually increase the level of security

by generating private keys of 4096 bits from groups built starting from large numbers factorization

problem or 512 bits from groups that are based on discrete logarithm problem, it is highly

recommended to raise the hash algorithm used from SHA-256 to SHA-384 or even SHA-512.

The communication between the other components from ReCRED is performed through a TLS channel

that ensure the confidentiality of the information and the authenticity of the servers. As an additional

security measure, all the requests received by both the Idemix and U-Prove REST API must contain a

session established together by issuer and prover at the beginning of the protocol. This ensures that

once the protocol has started, no attacker can interfere with the protocol and alter the messages

exchanged by the prover with the issuer.

Regarding the implementation of various sensitive components into the TEE we choose the private

key generation and sign operation to be executed inside the trusted environment. This ensures that,

once generated, the private key associated with the token or the master secret key associated to the

user cannot be exported in an un-secure environment. Trustlet access is performed through a well-

defined API and does not allow the disclosure of the private key/master secret key.

5.14 Security Analysis of the ABE-Based P-ABAC solution for Wi-Fi

This section reports Security Considerations on the ABE-Based P-ABAC solution for Wi-Fi, described in

Section 3.1.11.

In our proposed system, the WLAN access point makes use of the WPA2 link-level encryption protocol,

so that the access to the network requires knowledge of the pre-shared key (PSK). While common

deployment of WLAN systems based on WPA2 remains vulnerable against password cracking attacks

due to the weakness of the password/passphrase, we propose to generate a random key, of the

maximum size allowed by WPA2 at each successful connection so that it cannot be easily guessed, at

least assuming the usage of a secure RNG algorithm in the system. However, this challenge-like

approach cannot be used without integration of an efficient technology for the distribution of the key

that is not pre-shared, i.e., it is a priori unknown to the user. In order to make possible for the users

to retrieve the secret key required to access the network by proving that they are authorized, we

exploit the CP-ABE scheme. CP-ABE allows us to encrypt the PSK, defining a boolean access policy over

the attributes that the user must own in order to be able to decrypt and retrieve the PSK. This

strengthens the security of actual WPA2-based systems building an access control mechanism for key

distribution on top of it. Assuming honest users that do not leak the CP-ABE secret key to other users

with the aim of satisfying the policy, it will be impossible for an attacker to sniff or even forge packets

to obtain access to the network without having the credentials required by the encryption policy.

Indeed, the random generated WPA2 key will be encrypted by means of the CPABE scheme and

decrypted only by the legitimate users who are able to satisfy the policy.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

136

6 Conclusions / Future Work
This deliverable entitled “Full Design and Prototype of the ABAC Infrastructure” follows and improves

the architecture defined in D5.1 “Specification and Initial Design of the ABAC Infrastructure”. This

document provides the description of the ReCRED Privacy-Preserving Attribute-Based Access-Control

(P-ABAC) infrastructure integrated in the ReCRED framework to provide ABAC capabilities with the

guarantee of privacy protection of the user information. In this deliverable, the architectural design

has been enhanced with the definition of revocation systems as well as the integration with

commercial solutions for authentication like OpenID-connect and FIDO protocols in order to provide

a platform compatible with already deployed commercial solutions. The design of actual P-ABAC

modules has been supported by the final prototyping and the integration of such components to have

the final prototype of the whole P-ABAC architecture to be integrated in the ReCRED framework (e.g.

the Credential Management Module is already integrated in the Identity Consolidator module defined

in WP4).

The results of this deliverable will be used as input for the integration activities and for the deployment

of the pilots. Future work, includes the integration of other cryptographic schemes in the P-ABAC

architecture. Indeed, the first implementation of ABE scheme in the WiFi use-case will drive the final

integration of it in the final P-ABAC architecture in order to provide a full and flexible solution for

credential systems.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

137

7 References
[1] Lapon, Jorn, et al. "Analysis of revocation strategies for anonymous Idemix credentials." IFIP

International Conference on Communications and Multimedia Security. Springer Berlin

Heidelberg, 2011.

[2] Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms.

In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003).

[3] Backes, M., Camenisch, J., Sommer, D.: Anonymous yet accountable access control. In:

Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 40–46. ACM,

New York (2005).

[4] Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient update of anonymous

credentials. In: Security and Cryptography for Networks, pp. 454–471 (2011).

[5] Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant

costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 463–

480. Springer, Heidelberg (2009)  

[6] Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of

anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer,

Heidelberg (2002)

[7] Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA

2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

[8] Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient

revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,

pp. 481–500. Springer, Heidelberg (2009)

[9] IRMA (I Reveal My Attributes) Project. https://www.irmacard.org/

[10] IRMATube. https://demo.irmacard.org/v2/demos/irmaTube/

[11] Advanced crypto software collection ciphertext-policy attribute-based encryption.

http://hms.isi.jhu.edu/acsc/cpabe/.

[12] Linux wireless - hostapd. http://linuxwireless.org/en/ users/Documentation/hostapd/.

[13] Linux wireless - iw. http://linuxwireless.org/en/users/Documentation/iw/.

[14] Linux wireless - wpa supplicant. http://linuxwireless. org/en/users/Documentation/wpa-

supplicant/.

[15] IEEE standard for information technology telecommunications and information exchange

between systems - local and metropolitan area networks - specific requirements - part 11: Mac

and phy specifications. IEEE Std 802.11-2007, pages 1–1076, June 2007.

[16] IEEE standard for local and metropolitan area networks–port-based network access control.

IEEE Std 802.1X-2010, pages 1–205, Feb 2010.

[17] Cisco visual networking index: Global mobile data traffic forecast update, 2015 white paper.

http://www.cisco.com/c/en/us/solutions/collateral/ service-provider/visual-networking-index-

vni/ mobile-white-paper-c11-520862.html, 2016.

[18] A. Aijaz, H. Aghvami, and M. Amani. A survey on mobile data offloading: technical and business

perspectives. Wireless Communications, IEEE, 20(2):104–112, 2013.

[19] W. Alliance. Wpa2 security now mandatory for Wi-Fi certified products. Press Release, 2006.

[20] M. Ambrosin, M. Conti, and T. Dargahi. On the feasibility of attribute-based encryption on

smartphone devices. In Proceedings of the 2015 Workshop on IoT challenges in Mobile and

Industrial Systems, pages 49–54. ACM, 2015.

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

138

[21] P. Arana. Benefits and vulnerabilities of Wi-Fi protected access 2 (wpa2). INFS 612, pages 1–6,

2006.

[22] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin. Persona: an online social

network with user-defined privacy. In ACM SIGCOMM Computer Communication Review,

volume 39, pages 135–146. ACM, 2009.

[23] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In

Proceedings of the IEEE Symposium on Security and Privacy, SP’07, pages 321–334. IEEE, 2007.

[24] H. Boland and H. Mousavi. Security issues of the ieee 802.11b wireless lan. In Proceedings of the

Canadian Conference on Electrical and Computer Engineering, 2004., volume 1, pages 333–336.

IEEE, 2004.

[25] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable

distribution of bulk data. ACM SIGCOMM Computer Communication Review, 28(4):56–67, 1998.

[26] A. Cassola, E.-O. Blass, and G. Noubir. Authenticating privately over public Wi-Fi hotspots. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,

CCS’15, pages 1346–1357. ACM, 2015.

[27] A. Cassola, W. K. Robertson, E. Kirda, and G. Noubir. A practical, targeted, and stealthy attack

against WPA enterprise authentication. In Proceedings of the 20th Annual Network and

Distributed System Security Symposium, NDSS’13, 2013.

[28] T. Dargahi, M. Ambrosin, M. Conti, and N. Asokan. Abaka: A novel attribute-based k-anonymous

collaborative solution for lbss. Computer Communications, 85:1–13, 2016.

[29] K. Frikken, M. Atallah, and J. Li. Attribute-based access control with hidden policies and hidden

credentials. Computers, IEEE Transactions on, 55(10):1259–1270, 2006.

[30] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access

control of encrypted data. In Proceedings of the 13th ACM conference on Computer and

communications security, CCS’06, pages 89–98. Acm, 2006.

[31] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell, A. Schnitzer, K. Sandlin,

R. Miller, K. Scarfone, et al. Guide to attribute based access control (ABAC) definition and

considerations. NIST Special Publication, 800:162, 2013.

[32] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo. Attribute-based access control. Computer, (2):85–88,

2015.

[33] T. Jung, X.-Y. Li, Z. Wan, and M. Wan. Control cloud data access privilege and anonymity with

fully anonymous attribute-based encryption. IEEE Transactions on Information Forensics and

Security, 10(1):190–199, 2015.

[34] J. S. Park and D. Dicoi. Wlan security: current and future. IEEE Internet Computing, 7(5):60,

2003.

[35] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryptology–EUROCRYPT

2005, pages 457–473. Springer, 2005.

[36] S.-Y. Tan and W.-S. Yap. Cryptanalysis of a CP-ABE scheme with policy in normal forms.

Information Processing Letters, 116(7):492–495, 2016.

[37] H. Zhang, X. Chu, W. Guo, and S. Wang. Coexistence of Wi-Fi and heterogeneous small cell

networks sharing unlicensed spectrum. Communications Magazine, IEEE, 53(3):158–164, 2015.

[38] FIDO Alliance – http://fidoalliance.org

[39] OpenID – http://openid.net

[40] OpenAuth – http://oauth.net

http://oauth.net/

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

139

[41] Camenisch, Jan. "Specification of the Identity Mixer Cryptographic Library, Version 2.3.1,

December 7, 2010."

[42] Efficient non-transferable anonymous multi-show credential system with optional anonymity

revocation. In Advances in Cryptology – EUROCRYPT 2001, vol. 2045 of LNCS, pp. 93-118.

Springer Verlag, 2001.

[43] Camenisch, Jan, and Van Herreweghen, Els. "Design and implementation of the idemix

anonymous credential system." Proceedings of 9th ACM Conference on Computer and

Communications Security. ACM Press, 2002

[44] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio

Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Security in Communication Net- works,

Third International Conference, SCN 2002, volume 2576 of Lecture Notes in Computer Science,

pages 268–289. Springer Verlag, 2003.

[45] U-Prove Cryptographic Specification V1.1 Revision 3 - Christian Paquin, Greg Zaverucha

[46] Chase, Melissa. "Multi-authority attribute based encryption." Theory of cryptography. Springer

Berlin Heidelberg, 2007. 515-534.

[47] Lewko, Allison, and Brent Waters. "Decentralizing attribute-based encryption." Advances in

Cryptology–EUROCRYPT 2011. Springer Berlin Heidelberg, 2011. 568-588.

[48] FIWARE - https://www.fiware.org/

[49] FIWARE Privacy Open RESTful API Specification

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Privacy_Open_RESTful_API_S

pecification

[50] ABC4Trust - https://abc4trust.eu/

[51] WS-Trust 1.4 - http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

[52] Shucheng Yu, Cong Wang, Kui Ren, Wenjing Lou, “Attribute based data sharing with attribute

revocation”, ASIACCS 2010: 261-270

[53] Shucheng Yu, Kui Ren, Wenjing Lou, Jin Li, “Defending Against Key Abuse Attacks in KP-ABE

Enabled Broadcast Systems”, IACR Cryptology ePrint Archive 2009: 295 (2009)

[54] Xing Zhang, Cancan Jin, Zilong Wen, Qingni Shen, Yuejian Fang, Zhonghai Wu, “Attribute-Based

Encryption Without Key Escrow”, ICCCS 2015: 74-87

[55] Jason Crampton, Charles Morisset, “PTaCL: A Language for Attribute-Based Access Control in

Open Systems”, POST 2012: 390-409

[56] Jinguang Han, Willy Susilo, Yi Mu, Jianying Zhou and Man Ho Au, “Improving Privacy and

Security in Decentralized Ciphertext-Policy Attribute-based Encryption”, IEEE Transactions on

Information Forensics and Security, Vol. 10, Issue 3, pp. 665 - 678, 2015

[57] Qiang Li, Dengguo Feng, Liwu Zhang, “An attribute based encryption scheme with fine-grained

attribute revocation”, GLOBECOM 2012: 885-890

[58] Zhi Qiao, Shuwen Liang, Spencer Davis, Hai Jiang, “Survey of attribute based encryption”, SNPD

2014: 1-6

[59] Cheng-Chi Lee, Pei-Shan Chung, Min-Shiang Hwang, “A Survey on Attribute-based Encryption

Schemes of Access Control in Cloud Environments”, I. J. Network Security 15(4): 231-240 (2013)

[60] Eleanor Birrell, Fred B. Schneider, “Federated Identity Management Systems: A Privacy-Based

Characterization”, IEEE Security & Privacy 11(5): 36-48 (2013)

[61] Francisco Corella, Karen Lewison, “Privacy Postures of Authentication Technologies”, ID360

Conference on identity, 2013

[62] Pros and Cons of Idemix for NSTIC – Pomcor, [Online] https://pomcor.com/2011/10/10/pros-and-

cons-of-idemix-for-nstic/

https://www.fiware.org/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Privacy_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Privacy_Open_RESTful_API_Specification
https://abc4trust.eu/
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

Deliverable D5.2 “Full Design and Prototype of the ABAC Infrastructure”

140

[63] Pros and Cons of U-Prove for NSTIC, [Online] https://pomcor.com/2011/10/04/pros-and-cons-of-

u-prove-for-nstic/

[64] Department of Defense Trusted Computer System Evaluation Criteria, DoD 5200.28-STD,

December, 1985.

[65] NIST Joint Task Force (2013). Security and privacy controls for federal information systems and

organizations. NIST Special Publication 800, 53.

[66] Ferraiolo, David, Janet Cugini, and D. Richard Kuhn. "Role-based access control (RBAC): Features

and motivations." Proceedings of 11th annual computer security application conference. 1995.

[67] Sandhu, R., Ferraiolo, D.F. and Kuhn, D.R. (July 2000). "The NIST Model for Role Based Access

Control: Toward a Unified Standard" (PDF). 5th ACM Workshop Role-Based Access Control. pp.

47–63.

[68] Ahn, Gail-Joon, and Ravi Sandhu. "Role-based authorization constraints specification." ACM

Transactions on Information and System Security (TISSEC) 3.4 (2000): 207-226.

[69] Claudio Pisa, Alberto Caponi, Tooska Dargahi, Giuseppe Bianchi, Nicola Blefari-Melazzi. “WI-FAB:

attribute-based WLAN access control, without pre-shared keys and backend infrastructures”.

Proceedings of the 8th ACM International Workshop on Hot Topics in Planet-scale mObile

computing and online Social networking (HotPOST) 2016.

https://pomcor.com/2011/10/04/pros-and-cons-of-u-prove-for-nstic/
https://pomcor.com/2011/10/04/pros-and-cons-of-u-prove-for-nstic/

	Executive Summary
	List of Figures
	1 Introduction
	1.1 Attribute-Based Access Control
	1.2 Integration of ABAC in ReCRED

	2 P-ABAC Architecture
	2.1 P-ABAC Architectural Overview and Relation to the ReCRED Architecture
	2.1.1 ABAC Components
	2.1.1.1 User
	2.1.1.2 Issuer
	2.1.1.3 Verifier

	2.1.2 ReCRED Components Mapping to the ABAC Architecture
	2.1.2.1 User Device
	2.1.2.2 Identity Consolidator
	2.1.2.3 Identity Providers
	2.1.2.3.1 Issuing Authorities
	2.1.2.3.2 Verifiers

	2.2 Detailed P-ABAC Architectural Description
	2.2.1 Privacy Preserving Attribute-Based Credential Systems
	2.2.1.1 Idemix
	2.2.1.1.1 Idemix Anonymous Credential Scheme
	2.2.1.1.2 System Setup
	2.2.1.1.3 Credential Issuance
	2.2.1.1.3.1 Credential Issuance: Round 0
	2.2.1.1.3.2 Credential Issuance: Round 1
	2.2.1.1.3.3 Credential Issuance: Round 2
	2.2.1.1.3.4 Credential Issuance: Round 3

	2.2.1.1.4 Credential Proving
	2.2.1.1.4.1 Proof building procedure
	2.2.1.1.4.2 Proof verification procedure

	2.2.1.2 U-Prove
	2.2.1.2.1 U-Prove Primitives
	2.2.1.2.1.1 Issuer Primitives
	2.2.1.2.1.2 Device Parameters
	2.2.1.2.1.3 Token
	2.2.1.2.1.4 Token Private Key
	2.2.1.2.1.5 Token Public Key
	2.2.1.2.1.6 Issuer Signature
	2.2.1.2.1.7 Token Identifier

	2.2.1.2.2 U-Prove Protocols
	2.2.1.2.2.1 Issuance Protocol
	2.2.1.2.2.2 Prover Precomputation
	2.2.1.2.2.3 Issuer Precomputation
	2.2.1.2.2.4 Exchanged Messages
	2.2.1.2.2.5 Presentation Protocol
	2.2.1.2.2.6 Proof Generation
	2.2.1.2.2.7 Proof verification

	2.2.1.3 Attribute Based Encryption
	2.2.1.3.1 A multi-authority CP-ABE architecture

	2.2.1.4 Credential Revocation
	2.2.1.4.1 Verifiable Encryption
	2.2.1.4.2 Limited Lifetime
	2.2.1.4.3 Signature Lists
	2.2.1.4.4 Dynamic Accumulators
	2.2.1.4.5 ReCRED Credentials Revocation

	2.2.2 Common Interfaces and Protocols
	2.2.2.1 FIWARE Privacy Open RESTFul API
	2.2.2.1.1 Data format
	2.2.2.1.2 System parameters
	2.2.2.1.3 Issuance
	2.2.2.1.4 Token presentation
	2.2.2.1.5 Identity Selection

	2.2.2.2 IRMA (I Reveal My Attributes)
	2.2.2.2.1 IRMA Architecture
	2.2.2.2.2 IRMA Issuance
	2.2.2.2.3 IRMA Verification

	2.2.2.3 Consent Management Design

	3 P-ABAC Module Implementation and Mapping to P-ABAC components
	3.1 P-ABAC Components Implementation
	3.1.1 Credential Management Daemon
	3.1.1.1 P-ABAC API Server
	3.1.1.1.1 Idemix API Server
	3.1.1.1.2 U-Prove API Server

	3.1.1.2 Credential Management Application
	3.1.1.2.1 Credential Management Module Application Frontend
	3.1.1.2.1.1 List Compiled Credentials
	3.1.1.2.1.2 Issue Credentials

	3.1.1.2.2 Wallet Application

	3.1.1.3 Integration of the Credential Management in the Identity Consolidator

	3.1.2 U-Prove Implementation
	3.1.1.1 U-Prove engine implementation
	3.1.2.1.1 U-Prove entities
	3.1.2.1.2 U-Prove protocol flow
	3.1.2.1.3 U-Prove additional considerations

	3.1.2.2 U-Prove Web Server
	3.1.1.1.1 U-Prove Issuer Service
	3.1.1.1.2 U-Prove Verifier Service

	3.1.3 Trusted Execution Environment
	3.1.4 Consent Management
	3.1.4.1 Consent Management Back-end
	3.1.4.2 Consent Management Mobile Application
	3.1.4.2.1 Create new Consent Policy
	3.1.4.2.2 View created consent policies
	3.1.4.2.2.1 View created consent policies by an Identity attribute
	3.1.4.2.2.2 View created consent policies by an Identity Provider
	3.1.4.2.2.3 View created consent policies by Service Provider

	3.1.4.2.3 Manage created consent policies

	3.1.4.3 Consent Management Web Front-end

	3.1.5 De-anonymization Risk Assessment
	3.1.5.1 ID Provider Fields Risk
	3.1.5.2 Financial Information Risk
	3.1.5.3 Service Providers

	3.1.6 P-ABAC and FIDO Integration
	3.1.7 Credential Backup
	3.1.7.1 Backend
	3.1.7.2 Mobile Application
	3.1.7.2.1 Main menu
	3.1.7.2.2 Cryptographic Credentials stored on the device
	3.1.7.2.3 Cryptographic Credentials backup in the Identity Consolidator server

	3.1.7.3 Web application

	3.1.8 OpenAM-based P-ABAC
	3.1.9 IRMA-FIWARE Integration
	3.1.10 Attributes and Policies for P-ABAC
	3.1.10.1 Access Control Policy Management
	3.1.10.2 Policy Decision Point (PDP)
	3.1.10.3 Data Collection
	3.1.10.4 Policy Recommendation System

	3.1.11 ABE-Based P-ABAC Solution for Wi-Fi
	3.1.11.1 Introduction
	3.1.11.2 Background
	3.1.11.2.1 Attribute-Based Encryption
	3.1.11.2.2 Attribute-Based Access Control
	3.1.11.2.3 WPA2 Protocol
	3.1.11.2.4 IEEE 802.11 Beacon Management frames
	3.1.11.2.5 Fountain Coding

	3.1.11.3 Proposed Approach
	3.1.11.3.1 WI-FAB

	3.1.11.4 Implementation
	3.1.11.4.1 Fountain Coding
	3.1.11.4.2 Access Point
	3.1.11.4.3 Station

	3.1.11.5 Results
	3.1.11.6 Conclusions

	3.2 P-ABAC Components Mapping

	4 Application Scenarios
	4.1 Support to Financial Services
	4.1.1 Before ABAC
	4.1.2 After ABAC
	4.1.2.1 Identity Providers
	4.1.2.2 Service Providers
	4.1.2.3 Behavioral Authentication Authorities
	4.1.2.4 LATCH
	4.1.2.5 The Financial scenario revisited

	4.2 Campus Wi-Fi and Campus-Restricted Web Services
	4.2.1 Before ABAC
	4.2.2 After ABAC
	4.2.2.1 Advantages of ABAC
	4.2.2.2 Attributes and Attribute Values
	4.2.2.2.1 Professor:
	4.2.2.2.2 Student:

	4.2.2.3 Resources (Authorization Server)
	4.2.2.4 Attribute-Based Access Control Policies

	4.2.3 Towards Privacy-Preserving ABAC

	4.3 Age Verification
	4.3.1 Before ABAC
	4.3.2 After ABAC

	4.4 ISIC Student Discounts
	4.4.1 Before ABAC
	4.4.1.1 Summary of the issues without ABAC

	4.4.2 After ABAC

	5 Privacy and Security Considerations
	5.1 Attacks and Privacy Issues in ABE and ABAC
	5.2 Lack of Revocation
	5.3 Key Abuse Attack for KP-ABE
	5.4 Key Escrow
	5.5 Attribute Hiding Attack in ABAC
	5.6 Revelation of Access Policy and Attributes to Untrusted Servers
	5.7 Revelation of User's Identity in Multi Authority Scheme
	5.8 Mitigations to Enhance Security in ABE and ABAC systems
	5.9 Privacy considerations of Idemix and U-Prove
	5.9.1 Threat Model
	5.9.2 Comparison of Privacy features
	5.9.3 Revocation

	5.10 OpenAM P-ABAC Security Considerations
	5.11 FIDO Extensions for ABAC and Anonymous Credentials
	5.12 Security Considerations for the IRMA-FIWARE integration
	5.13 Privacy and Security Considerations in Idemix and U-Prove implementation
	5.14 Security Analysis of the ABE-Based P-ABAC solution for Wi-Fi

	6 Conclusions / Future Work
	7 References

