

A privacy-preserving authentication service using mobile devices

Mihai Togan
Security Software Architect
certSIGN

Context

Mobile devices

Present everywhere

High performance

- Computing power
- Security features

2 factors authentication

- Good candidates
- Easy to use

What to consider

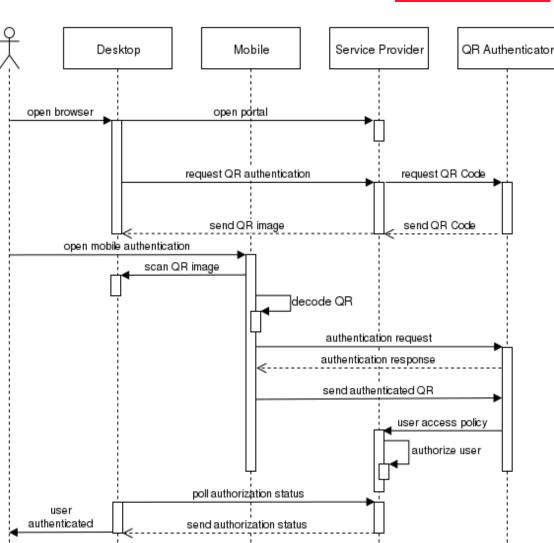
Credentials transfer

• QR codes

Authentication protocols

- UProve
- FIDO

Agenda

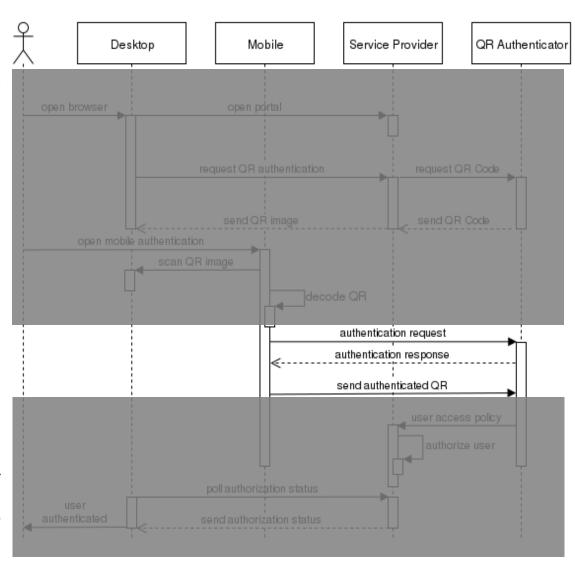


- 1. QR-based Authentication
 - QR-based Authentication using PKI
- 2. U-Prove & FIDO protocols
- 3. Privacy-preserving Authentication
 - FIDO Attribute-based Authentication
 - FIDO Authentication with Privacy-preserving
- 4. Use-cases
- 5. Conclusions

QR-based Authentication

- The aim: authentication and authorization for the user on the Service Provider's web application
- Credentials stored on the mobile device
- Identity transfer from the user's mobile phone to his desktop by using QR codes
- Authentication phase (user's mobile – QR Authenticator)
- Multiple solutions:
 - PKI, TLS, FIDO, custom
- A Honest QR Authenticator adds privacy-preserving for the user

QR-based Authentication using PKI



PKI authentication of the user to QR Authenticator

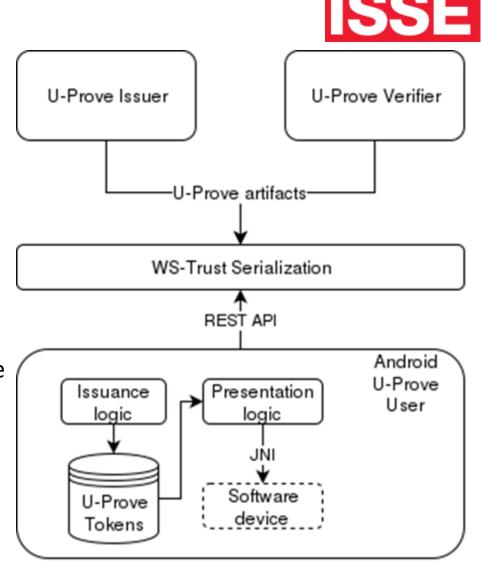
- Secure key storage (Android/iOS key store, hardware secure element)
- Digital signatures on the smartphone

Authentication process

- The user signs the QR code content using his private key and certificate stored on the mobile phone
- The phone sends the signed content and his certificate to the QR Authenticator server using a special connection
- 3. The QR Authenticator server verifies the digital signature, the content and the digital certificate of the user
 - If verification succeeds, the user is granted an access token which will be sent to the Service Provider

QR-based Authentication using PKI, cont.

- Two-factor authentication mechanism
 - The smartphone (something the user has)
 - The password to access the certificate from the smartphone (something the user knows)
 - A hardware secure element can be used to protect the private key
- Problems...
 - A PKI infrastructure needed
 - CA to manage the users' certificates
 - Requires digital certificates on mobile device
 - Users' enrollment to get certificates
 - Users' certificates path validation
 - Users' certificates revocation status checking (OCSP service)
- Best fit in PKI enabled environments


U-Prove

- Attribute-based cryptographic protocol providing user's privacy
 - Maintained by Microsoft
- Three entities involved
 - The user (the prover)
 - The issuer issues attribute containers
 - The verifier verifies user's proofs (attributes)
- Two main protocols
 - Issuing protocol (issuer <-> user)
 - Issuing the *Token Information* (TI) including user's attributes
 - Presentation protocol (user <-> verifier)
 - Proving user's attributes validity & the user's private key ownership
 - Proof generation sub-protocol (user device)
 - Proof verification sub-protocol (user verifier)
- Main idea: disclose only the required attributes to verifier
 - Unlinkability
 - Untraceability

U-Prove (cont.)

- On the server-side
 - Issuer (web-app)
 - Verifier (web-app)
 - REST API interface
 - WS-Trust Serialization [Paq11]
- On the user-side
 - Android application
 - U-Prove attributes stored as blobs in the application database

2016

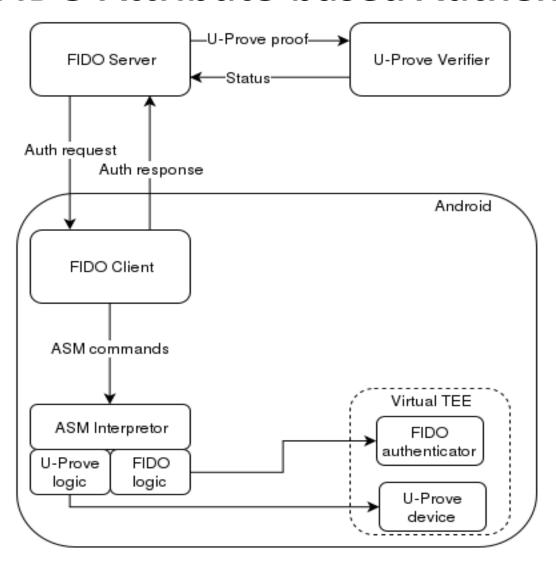
[Paq11] Christian PAQUIN, "U-Prove WS-Trust Profile V1.0", 2011

FIDO

- Passwordless authentication framework
 - FIDO Alliance (great support)
 - UAF, U2F
- FIDO entities
 - FIDO server (server-side)
 - FIDO client (client-side)
 - FIDO authenticator (client-side, trusted HW device)
- FIDO protocols: registration, authentication, deregistration
 - Generate user RSA key-pair
 - Challenge-response protocol
 - User unlocks his private key using various protection mechanisms
- Protocol messages
 - Extensions (used in our work to include attributes in FIDO)
- FIDO extension (not Extensions!)
 - FIDO Attribute-based Authentication
 - FIDO Authentication with Privacy-preserving

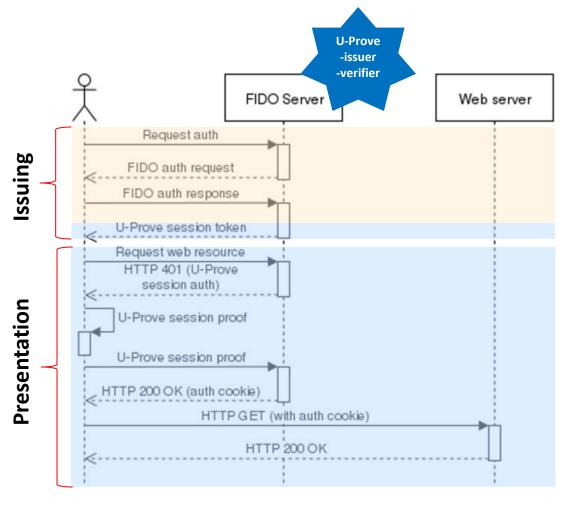
FIDO Attribute-based Authentication

- Combine the FIDO and U-Prove
 - With FIDO: user authentication
 - With U-Prove: user authorization (based on attributes)
 - Improved security layer on the server side
 - Granular access
- FIDO extended version
 - FIDO UAF standard messages (not modified)
 - Usage of FIDO extensions to carries user's attribute info
 - Server asks the required attributes using AuthenticationRequest
 - The client responds with U-Prove proofs in *AuthenticationResponse*
 - Attributes are embedded in Response extensions


FIDO Attribute-based Authentication


```
Dictionary AuthenticationRequest {
 required OperationHeader header;
                                                 Authentication Request
 required ServerChallenge challenge;
                                             FIDO server \rightarrow User
 Transaction[] transaction;
 required Policy policy;
                                                         Authentication Response
                                                     FIDO ASM → FIDO server
   Dictionary AuthenticatorSignAssertion {
    required DOMString assertionScheme;
    required DOMString assertion;
    Extension[] exts; /* Serialized U-Prove proof */
  Dictionary Extension {
    required DOMString id;
                                       /* Bind to 'U-Prove - attribute' */
                                       /* Required attribute encoded as base64 */
    required DOMString data;
    required boolean fail_if_unknown;
                                       /* Bind to true */
```

FIDO Attribute-based Authentication



- Does not provide:
 - Unlinkability
 - Untraceability

FIDO Authentication with Privacy-preserving

- The user doesn't trust the FIDO server
- Unlinkability and Untraceability are required
- FIDO and U-Prove logic are separated
 - Step 1 (UP-Issuing), after FIDO authentication. User receives:
 - "authenticated" attribute
 - "validity timeframe" attribute
 - Step 2 (UP-Presentation): U-Prove authorization
 - User presents attributes to U-Prove verifier
- Get a **K-anonymity** scheme

Use cases

- Pilot implementation ReCRED project
 - Access to campus resources
 - Registered professors and students
 - Granting access to guests
 - Access to on-line restricted content
 - 18+
 - Legislation can be enforced

Conclusion

- Mobile devices are used for 2 factor authentication
 - Credential transfer QR codes
 - Authentication protocols
 - U-Prove
 - FIDO
- Combination of authentication protocols
 - Easy to use (FIDO)
 - Privacy preserving (U-Prove)
 - Untraceability
 - Unlinkability
- Pilot implementation ReCRED project
- Next steps
 - Implementation using TEE equipped hardware

Thank you!